flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

5 factors that can affect thermal stress break risk of insulated glass units

5 factors that can affect thermal stress break risk of insulated glass units

Glass type, glass coating, shading patterns, vents, and framing system can impact an IGU’s risk for a thermal break.


By PPG Glass Education Center | July 7, 2014
Glass type, glass coating, shading patterns, vents, and framing system can all i
Glass type, glass coating, shading patterns, vents, and framing system can all impact an IGUs risk for a thermal break. Illustr

Thermal stress is one of many factors that can cause glass to break, even when it is not impacted by a projectile. 

Such failures usually are not a testament to the quality of the glass, but rather the result of temperature imbalance within the glass, which can occur when the center of a window or insulating glass unit (IGU) heats and expands while the edges remain cool. 

The resulting thermally induced tensile stress on the glass edges can exceed the strength of the glass itself, causing it to break at approximately a 90-degree angle.

Working closely with the IGU fabricator and glass supplier, and conducting a thermal stress analysis at the beginning of the design phase can help architects specify the proper glass for their projects. Here are five thermal stress related rules-of-thumb to consider when specifying glass:  

1. Clear or color? Glass can be clear, ultra-clear or tinted in colors such as gray, blue, green and bronze. Tinted glasses absorb solar radiation more than clear glass, which can cause them to collect heat and make them more susceptible to break from thermal stress.

2. Inner or outer surface? Reflective and low-emissivity (low-e) coatings, which improve the solar performance of glass primarily by reflecting solar radiation, can be placed on any one of four surfaces in a dual-pane IGU.  While they are usually placed on the inner glass surfaces of the IGU, the coating orientation and the associated risk of thermal stress has to be taken into account.

3. Sunny or shady? Outdoor shading, including overhangs, adjacent buildings, and trees, is one of the most dynamic elements to consider when analyzing thermal stress. Minimizing locations where non-uniform shading of IGUs can occur will help avoid extreme temperature gradients. Interior shading devices, such as blinds or drapes, can increase glass temperature by reflecting solar radiation back through the glass or by reducing the convection and conduction of heat away from the glass. To minimize thermally induced edge stress, the air space around the window glass should be ventilated. There should be a gap of several inches between the glass and shades, blinds or drapes.  

4. Where to place a vent? If heating vents, registers and grilles point directly at glass units, warm air will cause the glass to heat up and, under certain conditions, break. Make sure vents are carefully placed to reduce thermal stress risk and avoid placing them between the glass and interior shading devices.

5. How to frame it? Glass framing systems that have low heat capacity also can minimize the chance of a thermal stress break. Structural gaskets and narrow metal framing are favorable because they have less effect on the glass temperature around the edges. Conversely, massive framing – whether metal, masonry or even wood – can have more of an effect, resulting in thermal imbalance and risk of glass breakage. 

To learn more about avoiding thermal breakage of insulated glass units and other glass-related topics, visit the PPG Glass Education Center at www.educationcenter.ppg.com.

Related Stories

| Oct 4, 2011

GREENBUILD 2011: Wall protection line now eligible to contribute to LEED Pilot Credit 43

The Cradle-to-Cradle Certified Wall Protection Line offers an additional option for customers to achieve LEED project certification.

| Oct 3, 2011

Magellan Development Group opens Village Market in Chicago’s Lakeshore East neighborhood

Magellan Development Group and Hanwha Engineering & Construction are joint-venture development partners on the project. The Village Market was designed for Silver LEED certification by Loewenberg Architects and built by McHugh Construction. 

| Oct 3, 2011

Balance bunker and Phase III projects breaks ground at Mitsubishi Plant in Georgia

The facility, a modification of similar facilities used by Mitsubishi Heavy Industries, Inc. (MHI) in Japan, was designed by a joint design team of engineers and architects from The Austin Company of Cleveland, Ohio, MPSA and MHI.

| Oct 3, 2011

Cauceglia to lead Allsteel’s global accounts

Cauceglia is responsible for developing new global business strategies and expanding existing business within the Fortune 500 sector.

| Sep 30, 2011

BBS Architects & Engineers completes welcoming center at St. Charles Resurrection Cemetery

The new structure serves as the cemetery's focal architectural point and center of operations.  

| Sep 30, 2011

Kilbourn joins Perkins Eastman

Kilbourn joins with more than 28 years of design and planning experience for communities, buildings, and interiors in hospitality, retail/mixed-use, corporate office, and healthcare.

| Sep 30, 2011

Design your own floor program

Program allows users to choose from a variety of flooring and line accent colors to create unique floor designs to complement any athletic facility. 

| Sep 30, 2011

AAMA offers electronic technical documents with launch of virtual library

This new program offers a system for members to purchase annual licenses in order to offer electronic versions of AAMA publications in an effort to make AAMA’s technical information resources more readily available to their employees.

| Sep 29, 2011

Submit your Great Solutions

Profiles of Great Solutions will appear in December 2011 issue of Building Design+Construction.

| Sep 29, 2011

Busch Engineering, Science and Technology Residence Hall opens to Rutgers students

With a total development cost of $57 million, B.E.S.T. is the first on-campus residence hall constructed by Rutgers since 1994.

boombox1
boombox2
native1

More In Category


Urban Planning

Bridging the gap: How early architect involvement can revolutionize a city’s capital improvement plans

Capital Improvement Plans (CIPs) typically span three to five years and outline future city projects and their costs. While they set the stage, the design and construction of these projects often extend beyond the CIP window, leading to a disconnect between the initial budget and evolving project scope. This can result in financial shortfalls, forcing cities to cut back on critical project features.



Libraries

Reasons to reinvent the Midcentury academic library

DLR Group's Interior Design Leader Gretchen Holy, Assoc. IIDA, shares the idea that a designer's responsibility to embrace a library’s history, respect its past, and create an environment that will serve student populations for the next 100 years.

halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021