After nearly half a century of use, Southminster Presbyterian Church’s steel window frames and single glass pane windows were in deplorable condition.
“About all they did was keep the rain and snow out but they let in all the heat and all the cold all of the time,” said the Rev. Dr. Daniel B. Merry, senior pastor, Southminster Presbyterian Church in Mt. Lebanon, a Pittsburgh suburb.
New windows would need to not only stand the test of time, but also accommodate the aesthetics of an architecturally historic church. The Norman Gothic style church was originally designed by renowned architect Thomas Pringle and built in 1928. An additional wing for educational programs and offices was added in the early 1950s. The educational wing includes the approximately 350 steel frame windows that needed to be replaced.
After receiving several bids from different companies, the Rev. Merry and Southminster Presbyterian Church chose GThurm windows from Graham Architectural Products.
“We thought GThurm windows were the best insulating window, and far superior to aluminum windows and their insulation value,” said the Rev. Merry. “We believe it is cutting-edge technology. We’d rather be on the front of the curve than the back of the curve.”
Graham Architectural Products’ GThurm high-efficiency windows are the first American-made, architecturally rated windows (AW) to feature thermal transmission measures as low as U 0.15 (R 7) using readily available insulating glass. The window lineals, which were created using the G2RP glass-reinforced polyurethane pultrusion process, offer improved dimensional stability, durability, thermal insulation and environmental friendliness over traditional windows. The polyurethane used to produce G2RP reinforced glass fibers is a unique polyurethane resin supplied by Bayer MaterialScience LLC that contains no volatile organic compounds (VOCs). Graham Architectural Products is a member of Bayer’s EcoCommercial Building (ECB) Network that strives to make net-zero energy buildings possible by bringing together leading companies that provide state-of-the-art product and service technologies.
“One of the primary benefits of the GThurm material technology is the lack of heat conduction,” said Jim Eisenbeis, director of marketing, Graham Architectural Products. “Aluminum is 700 times more heat conductive than our material, which is bad if you want to keep heat in or out of the building.”
Harry George, manager, new markets, Bayer MaterialScience LLC, said: “In this project, replacing the window frames alone provides significantly better thermal conductivity than the old steel frames. The GThurm product provides a more energy efficient window than a thermally broken aluminum window, or a steel frame window.”
Gibsonia, Pa.-based Windows Systems Inc. removed the old windows and installed the new models. The steel casement windows, originally installed with a fin that goes between the exterior stone and interior block wall, required an elaborate removal process, said Drake Core, vice president, Window Systems Inc.
One of the most important challenges was retaining the sight lines of the building even as the church requested a reduction of operable windows with fixed windows.
“This created a sight line issue,” Core said. “If one window opens and another one doesn’t, that affects the look from the outside due to the differing thickness. We downsized the fixed window and added to it so that it replicates an operable window and maintains a uniform appearance.”
Additionally, the presence of an on-site daycare facility required the installers to meet federal “renovate, repair, paint” regulations for lead paint. Core and his team went a step further and hired an outside consulting firm to monitor air quality and surfaces during and after the installation.
With those challenges solved, the installation of the new windows was cut and dried, he said. “It’s pretty much the same installation process as traditional aluminum windows,” Core said.
The newly installed windows offered an unexpected benefit for those who work in the church offices. The church is located at the corner of a busy main street and a cobblestone road. Two elementary schools and an emergency services department with a loud siren are also nearby. As such, the ambient neighborhood noise was often evident to people inside the church.
“After the project was completed, the first thing I noticed was the sound,” said the Rev. Merry. “The GThurm windows are so tight and well insulated that the quiet in the office and educational areas was immediately noticeable.
“And when the heat index soared to higher than 100 degrees for several days during a July 2011 heat wave, the offices with air conditioning units absolutely stayed cooler with the new windows than they had with the previous steel casement windows.”
Additionally, the windows provide not only improved insulation value but also superior strength. This is achieved through a pultrusion process in which 80 percent continuous stranded glass content is combined with 20 percent resin to produce window lineals, Eisenbeis explained.
Polyurethane chemistry offers many benefits over the chemistries traditionally used in the pultrusion process. Not only can polyurethane chemistries be customized on a project-by-project basis to provide greater strength, as well as better working and performance characteristics than polyesters, vinyl esters and epoxies; polyurethane resins are also free of the hazardous styrene emissions common to polyesters and vinyl esters.
Unlike traditional fiberglass window lineals, the GThurm window lineals pultruded with the G2RP require no additional reinforcement for structural integrity. The unique process allows for lightweight framing with superior structural performance and a thermal performance nearly triple that of ordinary architecturally-rated window products. The production of GThurm lineals is expected to use less energy per pound of raw materials than comparable aluminum designs, supporting a sustainable design.
“As government regulations ratchet up requirements for window insulation values, it will be increasingly difficult to install aluminum windows and meet requirements,” said Core. “The Southminster Presbyterian Church project demonstrates the viability of this new window technology.” +
Related Stories
MFPRO+ News | Jun 3, 2024
Seattle mayor wants to scale back energy code to spur more housing construction
Seattle’s mayor recently proposed that the city scale back a scheduled revamping of its building energy code to help boost housing production. The proposal would halt an update to the city’s multifamily and commercial building energy code that is scheduled to take effect later this year.
Mass Timber | May 31, 2024
Mass timber a big part of Western Washington University’s net-zero ambitions
Western Washington University, in Bellingham, Wash., 90 miles from Seattle, is in the process of expanding its ABET-accredited programs for electrical engineering, computer engineering and science, and energy science. As part of that process, the university is building Kaiser Borsari Hall, the 54,000-sf new home for those academic disciplines that will include teaching labs, research labs, classrooms, collaborative spaces, and administrative offices.
Construction Costs | May 31, 2024
Despite challenges, 2024 construction material prices continue to stabilize
Gordian’s Q2 2024 Quarterly Construction Cost Insights Report indicates that supply chain issues notwithstanding, many commodities are exhibiting price normalization.
University Buildings | May 30, 2024
Washington University School of Medicine opens one of the world’s largest neuroscience research buildings
In St. Louis’ Cortex Innovation District, Washington University School of Medicine recently opened its new Jeffrey T. Fort Neuroscience Research Building. Designed by CannonDesign and Perkins&Will, the 11-story, 609,000-sf facility is one of the largest neuroscience buildings in the world.
Architects | May 30, 2024
AE firm Goodwyn Mills Cawood merges with Southland Engineering
Architecture and engineering firm Goodwyn Mills Cawood (GMC) is further expanding its services through a strategic merger with engineering firm Southland Engineering in Cartersville, Ga.
K-12 Schools | May 30, 2024
Inclusive design strategies to transform learning spaces
Students with disabilities and those experiencing mental health and behavioral conditions represent a group of the most vulnerable students at risk for failing to connect educationally and socially. Educators and school districts are struggling to accommodate all of these nuanced and, at times, overlapping conditions.
MFPRO+ New Projects | May 29, 2024
Two San Francisco multifamily high rises install onsite water recycling systems
Two high-rise apartment buildings in San Francisco have installed onsite water recycling systems that will reuse a total of 3.9 million gallons of wastewater annually. The recycled water will be used for toilet flushing, cooling towers, and landscape irrigation to significantly reduce water usage in both buildings.
Healthcare Facilities | May 28, 2024
Healthcare design: How to improve the parking experience for patients and families
Parking is likely a patient’s—and their families—first and last touch with a healthcare facility. As such, the arrival and departure parking experience can have a profound impact on their experience with the healthcare facility, writes Beth Bryan, PE, PTOE, PTP, STP2, Principal, Project Manager, Walter P Moore.
Urban Planning | May 28, 2024
‘Flowing’ design emphasizes interaction at Bellevue, Wash., development
The three-tower 1,030,000-sf office and retail development designed by Graphite Design Group in collaboration with Compton Design Office for Vulcan Real Estate is attracting some of the world’s largest names in tech and hospitality.
MFPRO+ News | May 28, 2024
ENERGY STAR NextGen Certification for New Homes and Apartments launched
The U.S. Environmental Protection Agency recently launched ENERGY STAR NextGen Certified Homes and Apartments, a voluntary certification program for new residential buildings. The program will increase national energy and emissions savings by accelerating the building industry’s adoption of advanced, energy-efficient technologies, according to an EPA news release.