flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

Houston’s Rice University opens the largest research facility on its core campus

University Buildings

Houston’s Rice University opens the largest research facility on its core campus

The five-story engineering and science building features state-of-the-art labs and a design that fosters collaboration.


By Novid Parsi, Contributing Editor | January 18, 2024
Student research facility on campus
Ralph S. O’Connor Building for Engineering and Science. Photo © Dave Burk, courtesy SOM

Houston’s Rice University has opened the largest research facility on its core campus: the $152 million Ralph S. O’Connor Building for Engineering and Science.

Designed by Skidmore, Owings & Merrill (SOM), the 251,400-sf, five-story O’Connor Building provides students and researchers with state-of-the-art laboratories, classrooms, offices, and a cafe, in addition to multiple gathering spaces. On the top level, a multipurpose event space with an outdoor terrace offers views of the campus and the Houston skyline.

A five-story central atrium serves as an activity hub, connecting to seminar rooms, break areas, and informal gathering spaces. On the atrium’s ground level, a transparent glass façade displays this activity to the larger campus. At the building’s main entrance, brick walls and a fritted glass wall frame a cantilevered sculptural stair.

fritted glass wall frame a cantilevered sculptural stair.
Photo © Dave Burk, courtesy SOM


Passive and Active Design Strategies for Research Facilities

SOM’s design intends to foster collaboration in four research areas: advanced materials, quantum science and computing, urban research and innovation, and the energy transition. Promoting this interaction, the stair tower and the central hub connect a series of stepped double-height collaboration areas on different levels. Conference rooms and break areas offer more opportunities for informal learning and connection.

In line with the historic campus’s aesthetics, the O’Connor Building’s façade features brick and punched windows with angled brick pilasters and fins. Along the western edge, a covered arcade is shaded by a brick and stone veil. The arcade veil comprises alternating bands of brick and cast-stone modules, with rotated bricks in between, so light can enter between the gaps.

Both passive and active design strategies include maximizing daylight, strategic placement of the angled pilasters and vertical fins, and the use of skylights to soften the strong Texas sun. As a result of the passive design strategies, as well as an energy-efficient HVAC and lighting system, the laboratories use 50% less energy than a comparable research space. 

student research floor
Photo © Dave Burk, courtesy SOM

On the Building Team:
Architect: Skidmore, Owings & Merrill
Structural engineer: IMEG Corp.
Local architect, programmer, laboratory planner: Scientia Architects
Lab consultant: Jacobs Engineering Group, Inc.
Civil engineering: Walter P Moore
Mechanical, electrical, plumbing: Wylie
Landscape: OJB Landscape Architecture
Contractor: Anslow-Bryant Construction

Related Stories

| Oct 17, 2011

Clery Act report reveals community colleges lacking integrated mass notification systems

  “Detailed Analysis of U.S. College and University Annual Clery Act Reports” study now available. 

| Oct 14, 2011

University of New Mexico Science & Math Learning Center attains LEED for Schools Gold

Van H. Gilbert architects enhances sustainability credentials.

| Oct 12, 2011

Bulley & Andrews celebrates 120 years of construction

The family-owned and operated general contractor attributes this significant milestone to the strong foundation built decades ago on honesty, integrity, and service in construction. 

| Sep 30, 2011

Design your own floor program

Program allows users to choose from a variety of flooring and line accent colors to create unique floor designs to complement any athletic facility. 

| Sep 23, 2011

Okanagan College sets sights on Living Buildings Challenge

The Living Building Challenge requires projects to meet a stringent list of qualifications, including net-zero energy and water consumption, and address critical environmental, social and economic factors. 

| Sep 14, 2011

Research shows large gap in safety focus

82% of public, private and 2-year specialized colleges and universities believe they are not very effective at managing safe and secure openings or identities. 

| Sep 7, 2011

KSS Architects wins AIA NJ design award

The project was one of three to win the award in the category of Architectural/Non-Residential. 

| May 18, 2011

Major Trends in University Residence Halls

They’re not ‘dorms’ anymore. Today’s collegiate housing facilities are lively, state-of-the-art, and green—and a growing sector for Building Teams to explore.

| May 18, 2011

Raphael Viñoly’s serpentine-shaped building snakes up San Francisco hillside

The hillside location for the Ray and Dagmar Dolby Regeneration Medicine building at the University of California, San Francisco, presented a challenge to the Building Team of Raphael Viñoly, SmithGroup, DPR Construction, and Forell/Elsesser Engineers. The 660-foot-long serpentine-shaped building sits on a structural framework 40 to 70 feet off the ground to accommodate the hillside’s steep 60-degree slope.

boombox1
boombox2
native1

More In Category

Libraries

Reasons to reinvent the Midcentury academic library

DLR Group's Interior Design Leader Gretchen Holy, Assoc. IIDA, shares the idea that a designer's responsibility to embrace a library’s history, respect its past, and create an environment that will serve student populations for the next 100 years.




halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021