flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

Purdue engineers develop intelligent architected materials

Building Materials

Purdue engineers develop intelligent architected materials

Purdue University researchers are testing the new adaptable materials for transportation, structural, and other real-world applications.


By Quinn Purcell, Managing Editor | October 2, 2023
Engineering Fountain Purdue University
Engineering Fountain Purdue University

Purdue University civil engineers have developed innovative materials that can dissipate energy caused by bending, compression, torque, and tensile stresses without sustaining permanent damage. These intelligent architected materials may also possess shape memory properties, making them reusable while enhancing safety and durability.

The research, led by Professor Pablo Zavattieri, believe the new class of adaptable materials offer potential uses in multiple industries, such as earthquake engineering, impact-resistant structures, biomedical devices, sporting goods, building construction, and automotive components. The technology is currently being tested for 3D-printed panels for aircraft runway mats and nonpneumatic tires for military vehicles, providing resistance to punctures and leaks while maintaining performance in various terrains.

Purdue develops intelligent architected materials
 

Purdue University intelligent architected materials
Products made with intelligent architected materials developed at Purdue University have the ability to change from one stable configuration to another stable configuration and back again. Courtesy Purdue University

“These materials are designed for fully recoverable, energy-dissipating structures, akin to what is referred to as architected shape memory materials, or phase transforming cellular materials, known as PXCM,” Zavattieri said. “They can also exhibit intelligent responses to external forces, changes in temperature, and other external stimuli.”

These materials can be created from various substances, such as polymers, rubber, and concrete, as long as they remain within the elastic range. They are designed to deform in controlled and programmable ways, providing enhanced energy absorption and adaptability. For the aircraft runway mats, Zavattieri sees the material aiding in self-healing properties, resulting in a longer life span than a runway made with AM-2 matting. "Another benefit is that debris on the runway will not hamper the runway’s performance with our technology," he says.

The Purdue researchers have demonstrated scalability from macro to micro applications and an improvement over traditional lightweight cellular materials.

Purdue University developed aircraft runway mat
Pablo Zavattieri, the Jerry M. and Lynda T. Engelhardt Professor in Civil Engineering, lifts an aircraft runway mat made with new intelligent architected materials developed at Purdue University. In testing, the mats were capable of withstanding over 5,000 landing and takeoff cycles over a 60-day period while showing no signs of failure. Courtesy Purdue University

“We have produced intelligent architected materials as large as 12 inches, which are ideal for applications like building and bridge construction to absorb and harness energy,” Zavattieri said. “Conversely, we have created materials with unit cells smaller than the thickness of a human hair. This scalability opens up a world of possibilities from macro to micro applications.”

The research has received funding from organizations like General Motors, ITAMCO (Indiana Technology and Manufacturing Companies), the National Science Foundation, and the U.S. Air Force. Additionally, patents have been filed to protect the intellectual property, and industry partners interested in commercializing the materials for the marketplace should contact Dipak Narula, Assistant Director of Business Development and Licensing in Physical Sciences, at dnarula@prf.org about 2018-ZAVA-68252, 2019-ZAVA-68691, 2020-ZAVA-69072 and 2022-ZAVA-69900.

Related Stories

| May 15, 2012

Don’t be insulated from green building

Examining the roles of insulation and manufacturing in sustainability’s growth.

| May 15, 2012

National Tradesmen Day set for Sept. 21

IRWIN Tools invites the nation to honor "The Real Working Hands that Build America and Keep it Running Strong".

| May 15, 2012

SAGE Electrochromics to become wholly owned subsidiary of Saint-Gobain

This deal will help SAGE expand into international markets, develop new products and complete construction of the company’s new, state-of-the-art manufacturing facility in Faribault, Minn.

| May 14, 2012

SOM to break ground on supertall structure in China

The 1,740-feet (530-meter) tall tower will house offices, 300 service apartments and a 350-room, 5-star hotel beneath an arched top.

| May 14, 2012

Adrian Smith + Gordon Gill Architecture design Seoul’s Dancing Dragons

Supertall two-tower complex located in Seoul’s Yongsan International Business District.

| May 14, 2012

ArchiCAD e-Specs integration unveiled

Architects, engineers and construction professionals use InterSpec’s e-SPECS products on thousands of projects annually to maintain synchronization between construction models, drawings, and project specifications.

| May 11, 2012

Betz promoted to senior vice president for McCarthy’s San Diego Office

He will oversee client relations, estimating, office operations and personnel as well as integration of the company’s scheduling, safety and contracts departments.

| May 11, 2012

AIA launches education and training portal

New portal to host Contract Documents training, education resources in one convenient place.

| May 9, 2012

Tishman delivers Revel six weeks early

Revel stands more than 730 feet tall, consists of over 6.3 milliont--sf of space, and is enclosed by 836,762-sf of glass.

| May 9, 2012

Stoddert Elementary School in DC wins first US DOE Green Ribbon School Award

Sustainable materials, operational efficiency, and student engagement create high-performance, healthy environment for life-long learning.

boombox1
boombox2
native1

More In Category


Brick and Masonry

A journey through masonry reclad litigation

This blog post by Walter P Moore's Mallory Buckley, RRO, PE, BECxP + CxA+BE, and Bob Hancock, MBA, JD, of Munsch Hardt Kopf & Harr PC, explains the importance of documentation, correspondence between parties, and supporting the claims for a Plaintiff-party, while facilitating continuous use of the facility, on construction litigation projects.



Glass and Glazing

The next generation of thermal glazing: How improving U-value can yield energy savings and reduce carbon emissions

The standards for energy-efficient construction and design have been raised. Due to the development of advanced low-e coatings for the interior surface and vacuum insulating technologies, architects now have more choices to improve U-values wherever enhanced thermal performance is needed to create eco-friendly spaces. These options can double or even triple thermal performance, resulting in annual energy savings and a positive return on carbon.

halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021