flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

5 Tips on Building with SIPs

5 Tips on Building with SIPs

Structural insulated panels are gaining the attention of Building Teams interested in achieving high-performance building envelopes in commercial, industrial, and institutional projects.


December 17, 2010
This article first appeared in the December 2010 issue of BD+C.

Typically composed of a layer of EPS, XPS, or polyurethane foam sandwiched between oriented strand board panels, structural insulated panels can provide R-values for walls, floors, and roofs ranging from 14 to 58, depending on the panel thickness and composition. SIPs also are manufactured to spec, which can result in reduced waste and potential labor savings.

First-time users may find working with SIPs somewhat worrisome, so we asked Frank Kiesecker, of SIP manufacturer ACH Foam Technologies, Denver, to provide some prescriptive advice that even experienced SIP users could benefit from.

1. Pre-plan electrical and equipment needs. Since SIPs are manufactured to meet the project’s specifications, it’s important to plan for electrical chases in advance to prevent time-consuming and sometimes costly modifications during installation. For example, SIP facings should never be cut horizontally for the installation of electrical wiring; doing so will compromise structural performance.

In addition, during the design phase, it’s important to determine whether there are any equipment needs for the installation of the panels. If the project specifies roof panels or wall or floor panels larger than 8x8 feet, a forklift or crane may be required for installation.

2. Organize the panels for installation. Proper storage, weather protection, and handling will make the installation process more efficient. Store the panels on a level space, no closer than three inches to the ground. Organize the panels by the sequence in which they will be installed (i.e., separate the first-floor panels from the second-floor ones), and make sure they’re covered with a breathable protective tarp to keep them dry.

3. Install the panels properly and seal them tight. SIPs need to be fully supported during installation. The panels slip over a wall plate, which needs to be set half an inch from the building edge to ensure that the panels are fully supported. Also, make sure to set the panels in place in the correct order: start in the corners or valleys and work outward. Once installed, all panel joints and voids must be properly sealed using adhesive or SIP tape to minimize air leakage and maintain the structure’s long-term durability.

4. Protect SIPs from water penetration. Once SIPs have been installed and sealed, weather protection such as housewrap is required to prevent moisture deterioration. Follow the housewrap manufacturer’s installation guidelines, and make sure to flash all penetrations. Over time, windows will leak some water at the sill. Use flashing under and around the units to direct water away from the wall structure.

5. Right-size your HVAC system. One common mistake, says Kiesecker, is underestimating the high insulating and air-sealing properties of SIPs when selecting an HVAC system. SIPs allow for smaller HVAC equipment. When working with an HVAC contractor, make sure they take into account an estimate for lower levels of air infiltration. Proper HVAC sizing is critical because an underused system will fail to reach a steady operating rate, resulting in short cycling, which is less energy efficient and requires more maintenance.

Other important factors to consider when determining HVAC sizing:

  • Size of the structure (each floor should be analyzed individually)
  • Orientation of building
  • Type of wall construction, and associated R-value
  • Window and door specs, including the number of windows and doors and their location, insulation value, and fenestration rating
  • Duct location (i.e., in heated space, unheated space, attic, crawl space, etc.)
  • Amount of air infiltration.

SIPs Do’s and Don’ts

  • Do provide adequate support for SIPs when storing them. SIPs should be stored flat and covered.
  • Do study installation drawings before setting panels.
  • Do remove debris from the plate area prior to panel placement.
  • Do provide level and square foundations or floors that support SIP walls.
  • Do provide adequate bracing of panels during erection.
  • Do hold the sill plate back from edge of floor system a half-inch to allow full bearing of SIP OSB facings.
  • Do provide 1½-inch-diameter access holes in plating to align with electrical wire chases in SIPs.
  • Do store sealant and SIP tape in a warm area for best application results in cold weather.
  • Do follow the manufacturer’s recommended joint sealing techniques.
  • Do place sealant along the leading edge of wood being inset into the panel.
  • Do use sealant on wood-to-wood, wood-to-EPS, and EPS-to-EPS connections.
  • Do use SIP tape or equivalent vapor retarder on roof panel joints.
  • Do install proper flashing and sealants around all rough openings and penetrations, as required.
  • Do use only continuous 2Xs, I-beams, and insulated I-beams for spline connections.
  • Do use proper underlayments for roofing and siding. SIP walls are airtight without housewrap, but they do need a drainage plane material.
  • Do install plumbing in interior walls. Furr out interior sections for pipes if necessary.
  • Do provide adequate ventilation to maintain indoor air quality.
  • Do use termite- and mold-resistant materials when required.
  • Don’t leave panels exposed to the elements for long periods of time.
  • Don’t lift SIPs by the top OSB facing or drop SIPs on corners.
  • Don’t install SIPs directly on concrete.
  • Don’t cut wall panel skins horizontally for installation of electrical wiring or overcut the OSB facings for field-cut openings. Use factory-provided chases in SIP core.
  • Don’t be afraid to field trim panels for an exact fit.
  • Don’t install recessed lighting inside the panels.
  • Don’t put plumbing in SIPs.

Related Stories

| Nov 9, 2010

Designing a library? Don’t focus on books

How do you design a library when print books are no longer its core business? Turn them into massive study halls. That’s what designers did at the University of Amsterdam, where they transformed the existing 27,000-sf library into a study center—without any visible books. About 2,000 students visit the facility daily and encounter workspaces instead of stacks.

| Nov 9, 2010

Turner Construction report: Green buildings still on the agenda

Green buildings continue to be on the agenda for real estate owners, developers, and corporate owner-occupants, according to the Turner 2010 Green Building Market Barometer. Key findings: Almost 90% of respondents said it was extremely or very likely they would incorporate energy-efficiency improvements in their new construction or renovation project, and 60% expected to incorporate improvements to water efficiency, indoor environmental quality, and green materials.

| Nov 5, 2010

New Millennium’s Gary Heasley on BIM, LEED, and the nonresidential market

Gary Heasley, president of New Millennium Building Systems, Fort Wayne, Ind., and EVP of its parent company, Steel Dynamics, Inc., tells BD+C’s Robert Cassidy about the Steel Joist Manufacturer’s westward expansion, its push to create BIM tools for its products, LEED, and the outlook for the nonresidential construction market.

| Nov 3, 2010

First of three green labs opens at Iowa State University

Designed by ZGF Architects, in association with OPN Architects, the Biorenewable Research Laboratory on the Ames campus of Iowa State University is the first of three projects completed as part of the school’s Biorenewables Complex. The 71,800-sf LEED Gold project is one of three wings that will make up the 210,000-sf complex.

| Nov 3, 2010

Park’s green education center a lesson in sustainability

The new Cantigny Outdoor Education Center, located within the 500-acre Cantigny Park in Wheaton, Ill., earned LEED Silver. Designed by DLA Architects, the 3,100-sf multipurpose center will serve patrons of the park’s golf courses, museums, and display garden, one of the largest such gardens in the Midwest.

| Nov 3, 2010

Public works complex gets eco-friendly addition

The renovation and expansion of the public works operations facility in Wilmette, Ill., including a 5,000-sf addition that houses administrative and engineering offices, locker rooms, and a lunch room/meeting room, is seeking LEED Gold certification.

| Nov 3, 2010

Sailing center sets course for energy efficiency, sustainability

The Milwaukee (Wis.) Community Sailing Center’s new facility on Lake Michigan counts a geothermal heating and cooling system among its sustainable features. The facility was designed for the nonprofit instructional sailing organization with energy efficiency and low operating costs in mind.

| Nov 3, 2010

Seattle University’s expanded library trying for LEED Gold

Pfeiffer Partners Architects, in collaboration with Mithun Architects, programmed, planned, and designed the $55 million renovation and expansion of Lemieux Library and McGoldrick Learning Commons at Seattle University. The LEED-Gold-designed facility’s green features include daylighting, sustainable and recycled materials, and a rain garden.

| Nov 3, 2010

Recreation center targets student health, earns LEED Platinum

Not only is the student recreation center at the University of Arizona, Tucson, the hub of student life but its new 54,000-sf addition is also super-green, having recently attained LEED Platinum certification.

| Nov 3, 2010

New church in Connecticut will serve a growing congregation

Tocci Building Companies will start digging next June for the Black Rock Congregational Church in Fairfield, Conn. Designed by Wiles Architects, the 103,000-sf multiuse facility will feature a 900-person worship center with tiered stadium seating, a children’s worship center, a chapel, an auditorium, a gymnasium, educational space, administrative offices, commercial kitchen, and a welcome center with library and lounge.

boombox1
boombox2
native1

More In Category


Urban Planning

Bridging the gap: How early architect involvement can revolutionize a city’s capital improvement plans

Capital Improvement Plans (CIPs) typically span three to five years and outline future city projects and their costs. While they set the stage, the design and construction of these projects often extend beyond the CIP window, leading to a disconnect between the initial budget and evolving project scope. This can result in financial shortfalls, forcing cities to cut back on critical project features.



Libraries

Reasons to reinvent the Midcentury academic library

DLR Group's Interior Design Leader Gretchen Holy, Assoc. IIDA, shares the idea that a designer's responsibility to embrace a library’s history, respect its past, and create an environment that will serve student populations for the next 100 years.

halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021