Solar photovoltaic applications in the U.S. continue to grow at an astounding pace, even though the domestic market has tapped only a small portion of the potential PV development.
So far, 2012 has been a strong year for the PV industry, with approximately 2,800 MW of installations projected, according to the Solar Energy Industries Association. The future looks even brighter, with forecasts for PV installations expected to rise at a compound annual growth rate of 30% through 2012.
To compare, the U.S. solar energy industry installed 1,855 MW of photovoltaic solar systems in 2011, representing a 109% increase over 2010. That’s enough to power 370,000 homes. The SEIA reported the fourth quarter of 2011 alone recorded 776 MW of PV systems installed in the U.S., making it the largest installation of photovoltaics for any quarter in PV market history.
Nearly half the installed and planned PV projects in the U.S. are expected to be roof-mounted installations. That’s a scary prospect for roofing product manufacturers and contractors, because an improperly installed PV rack can tear a roof to pieces in no time.
BD+C asked James R. Kirby, Vice President of Sustainability for the Center for Environmental Innovation in Roofing, Washington, D.C., for advice about what Building Teams and building owners should know about roof rack PV systems.
1. DO use the proper flashing techniques for steep-slope roofs.
Because water flows downhill, for steep-slope roofs (which, according to ASTM standard E 1918-97, are roofs in which the uppermost part is installed at a slope of 2:12 or more), proper overlaps during installation are critically important. Commonly used materials for this type of installation are metal flashings with compression gaskets or counterflashing at roof penetrations (or both).
Flashing works because it is located above the level where water drains.
For vertical penetrations, the flashing is the primary weatherproofing element. Counterflashings are secondary and placed above the flashing piece.
7 do’s and don’ts of PV roof rack installation
1. DO use the proper flashing techniques for steep-slope roofs.
2. DO avoid improper flashing techniques for low-slope roofs.
3. DON’T allow for hunt-and-peck pilot holes on steep-slope roofs.
4. DO maintain the roof and PV system after installation.
5. DON’T consider initial payback alone: Factor in life cycle costs.
6. DON’T equate a non-penetrating rack system with zero roof penetrations.
7. DO ask about ballasted rack systems on low-slope roofs and the impact of movement, abrasion, drainage, and wind.
In steep-slope situations where flashing is not feasible or necessary, the counterflashing should extend at least to the nail line of the shingle above. Both methods are acceptable for long-term PV roof rack installation.
“Not all low-slope penetrations use counterflashings, but they all need flashings,” says Kirby. “For steep-slope roofs, it’s a bit different. Shingles basically flash the shingle below by covering up the nails. So if a vertical presentation is attached to a roof, then it needs to be flashed.”
However, in steep-slope roofs, a counterflashing can be inserted under a shingle and over a fastener that’s securing the PV rack.
2. DO avoid improper flashing techniques for low-slope roofs.
For low-slope roofs with little slope to drain, rainwater can pond in low spots or where drainage is interrupted. Drainage can be interrupted by large or wide penetrations or by ballasted PV racks.
It is critical to use flashing that matches the roof’s membrane system. “For low-slope roofs, the flashing material is interfaced with the membrane material, and the materials are not interchangeable,” says Kirby.
Building Teams should support their clients by making sure that the PV contractor incorporates the proper flashing technique for penetrating PV racks.
3. DON’T permit hunt-and-peck pilot holes on steep-slope roofs.
Pilot holes are the number one reason for callbacks for complications after installation. PV installers often use a thin drill bit to locate a rafter in order to position the attachments. Unfortunately, they don’t always repair their “investigation” holes. There are ways to repair these pilot holes, but it’s best not to “hunt-and-peck” in the first place.
“Rafters should be located by observing the eave and ridge,” says Kirby. “Locate nails in the fascia board, which is commonly nailed into the ends of the roof rafters.”
Caution: Vertical stanchions generally require one or two fasteners to be installed into the rafter, not the roof deck, in order to achieve proper pull-out resistance to wind uplift.
4. DO maintain the roof and PV system after installation.
A roof’s chief priority is to keep water and weather out of the building. Therefore, the ability to perform maintenance is critical to the long-term success of a low-slope roof. Certain styles of ballasted PV racks can make it difficult to perform roof maintenance. Some styles must be removed or relocated in order to get to the roof surface for maintenance.
Fortunately, a number of newer rack styles and types that recognize the need for roof maintenance have been developed. “Those styles and types of PV systems will be the long-term success stories in the rooftop PV industry,” says Kirby. “Roof-friendly racking systems are a relatively new trend, and it’s up to the roofing industry to push for more roof-friendly racking systems.”
5. DON’T consider initial payback alone: Factor in life cycle costs.
It’s not easy getting most building owners to think long-term, but Building Teams should counsel clients about the PV investment in the cost per year over the 25- to 30-year life of the roof and the PV system.
According to Kirby, a building owner may expect a relatively short-term payback from the PV system in a certain number of years, but the owner also needs to recognize that the inverter will likely have to be replaced at year 12 or 15.
And what about the cost of a roof replacement if it’s not done at the time of installation? The age of the roof must be considered at the time of PV installation because it’s critical to the long-term success of both the roof and the PV installation.
“A roof that is too old could mean that the PV system may have to be removed along with the old roof,” says Kirby. “If the owner didn’t prepare for the cost, the PV system may not be installed again.”
6. DON’T equate a non-penetrating rack system with zero roof penetrations.
A building owner may be buying a non-penetrating PV rack system, but how do the PV system’s electrical lines get into the building? According to Kirby, the answer is often “through the roof.”
A junction box may be supported by non-penetrating supports; however, this does not eliminate the penetration caused by electrical lines. The entry point for the DC conduit must be properly flashed. Therefore, most if not all PV systems will have at least one penetration.
The same premise is true for both types of non-penetrating systems––adhered and ballasted. It is also important to note that if the PV installation is to occur on a low-slope roof that is under warranty, a contractor recommended by the roofing membrane manufacturer is required in order to keep the warranty from being voided.
7. DO ask about ballasted rack systems on low-slope roofs and impact of movement, abrasion, drainage, and wind.
There are critical questions you should ask the PV contractor prior to installation:
- How does a ballasted PV system rest upon the roof assembly?
- What will happen over time on the rooftop where the ballasted system meets the roof surface?
- Will it collect water and eventually cause weakness?
- Will there be dust or debris between the roof surface and the bottom of the rack?
- Will dust or debris abrade the roof surface over time?
- What measures can be taken to protect the integrity of the roof at the point of contact?
According to Kirby, asking these questions prior to installation is important because any problems that occur may reduce the return on investment to the property owner, while proper installation will keep maintenance costs in check over the life of the rooftop PV system. +
Related Stories
| Aug 11, 2010
Florida mixed-use complex includes retail, residential
The $325 million Atlantic Plaza II lifestyle center will be built on 8.5 acres in Delray Beach, Fla. Designed by Vander Ploeg & Associates, Boca Raton, the complex will include six buildings ranging from three to five stories and have 182,000 sf of restaurant and retail space. An additional 106,000 sf of Class A office space and a residential component including 197 apartments, townhouses, ...
| Aug 11, 2010
Restoration gives new life to New Formalism icon
The $30 million upgrade, restoration, and expansion of the Mark Taper Forum in Los Angeles was completed by the team of Rios Clementi Hale Studios (architect), Harley Ellis Devereaux (executive architect/MEP), KPFF (structural engineer), and Taisei Construction (GC). Work on the Welton Becket-designed 1967 complex included an overhaul of the auditorium, lighting, and acoustics.
| Aug 11, 2010
Best AEC Firms to Work For
2006 FreemanWhite Hnedak Bobo Group McCarthy Building Companies, Inc. Shawmut Design and Construction Walter P Moore 2007 Anshen+Allen Arup Bovis Lend Lease Cannon Design Jones Lang LaSalle Perkins+Will SmithGroup SSOE, Inc. Timothy Haahs & Associates, Inc. 2008 Gilbane Building Co. HDR KJWW Engineering Consultants Lord, Aeck & Sargent Mark G.
| Aug 11, 2010
High-Performance Workplaces
Building Teams around the world are finding that the workplace is changing radically, leading owners and tenants to reinvent corporate office buildings to compete more effectively on a global scale. The good news is that this means more renovation and reconstruction work at a time when new construction has stalled to a dribble.
| Aug 11, 2010
Great Solutions: Business Management
22. Commercial Properties Repositioned for University USE Tocci Building Companies is finding success in repositioning commercial properties for university use, and it expects the trend to continue. The firm's Capital Cove project in Providence, R.I., for instance, was originally designed by Elkus Manfredi (with design continued by HDS Architects) to be a mixed-use complex with private, market-...
| Aug 11, 2010
Nurturing the Community
The best seat in the house at the new Seahawks Stadium in Seattle isn't on the 50-yard line. It's in the southeast corner, at the very top of the upper bowl. "From there you have a corner-to-corner view of the field and an inspiring grasp of the surrounding city," says Kelly Kerns, project leader with architect/engineer Ellerbe Becket, Kansas City, Mo.
| Aug 11, 2010
AIA Course: Historic Masonry — Restoration and Renovation
Historic restoration and preservation efforts are accelerating throughout the U.S., thanks in part to available tax credits, awards programs, and green building trends. While these projects entail many different building components and systems, façade restoration—as the public face of these older structures—is a key focus. Earn 1.0 AIA learning unit by taking this free course from Building Design+Construction.
| Aug 11, 2010
BIM adoption tops 80% among the nation's largest AEC firms, according to BD+C's Giants 300 survey
The nation's largest architecture, engineering, and construction companies are on the BIM bandwagon in a big way, according to Building Design+Construction's premier Top 50 BIM Adopters ranking, published as part of the 2009 Giants 300 survey. Of the 320 AEC firms that participated in Giants survey, 83% report having at least one BIM seat license in house, half have more than 30 seats, and near...
| Aug 11, 2010
World's tallest all-wood residential structure opens in London
At nine stories, the Stadthaus apartment complex in East London is the world’s tallest residential structure constructed entirely in timber and one of the tallest all-wood buildings on the planet. The tower’s structural system consists of cross-laminated timber (CLT) panels pieced together to form load-bearing walls and floors. Even the elevator and stair shafts are constructed of prefabricated CLT.
| Aug 11, 2010
Integrated Project Delivery builds a brave, new BIM world
Three-dimensional information, such as that provided by building information modeling, allows all members of the Building Team to visualize the many components of a project and how they work together. BIM and other 3D tools convey the idea and intent of the designer to the entire Building Team and lay the groundwork for integrated project delivery.