Minneapolis-based Target Corp. has always put the design of its stores high up on its list of corporate priorities. Target was one of the original participants in the U.S Green Building Council’s Pilot Portfolio certification program, which allows prototype designs of multiple similar buildings to be LEED-certified as variations of a single prototype. Five Target stores have been LEED-certified to date.
Over the last year Target fully transitioned its new store design from 2D (using Bentley Microstation) to 3D (utilizing the Autodesk Revit BIM platform). Early in 2010, as Target began planning a new 142,206-sf store for San Clemente, Calif., the retailer decided to take prototype design to an even higher level, using both 3D BIM and integrated project delivery.
“Right now we maintain a general merchandise P [for “prototype”] store,” said Brad Koland, group manager of structural engineering at Target. However, this month the company will be releasing its Revit prototype. “Right now it doesn’t really get to a deeper level of integration,” said Koland. “We’re trying to find out the viability of how deeply embedded we can take this 3D information into our prototype.”
One goal of the San Clemente investigation was to figure out how better to utilize the space around the structural steel joists in its stores, space that typically houses some HVAC and electrical lines. There is a sense among Target’s architects and engineers that this space could be used more effectively if they were to know early enough in the design process exactly where the joist web framing lays out, so that they could plan how pipes, ducts, and electrical lines would go around them. Koland said Target’s Building Teams need to know how all the elements of the steel joists and the joist girders come into play early in the design phase to effectively utilize that space.
“With BIM analysis tools we knew we could reduce conflicts and increase utilization of the space within our box,” said Koland. “We wanted to move beyond that. We wanted to use BIM as a way to figure out what was in there, and then establish that and build in protocols for how we could start to utilize that space to reduce the height of our buildings, or maximize the amount of space we have, or minimize the amount of structure we have to put up.”
To do that, the integrated team on the San Clemente store—including IPD engineer and steel detailer Meyer Borgman Johnson (MBJ), general contractor Whiting-Turner, and the in-house architects and engineers at Target—met at strategic times near the end of the design phase of the Orange County store. Whiting-Turner created a comprehensive virtual design and construction (VDC) execution plan that was sent out as part of the bidding package for all subcontractors. It defined what Whiting-Turner would be providing, what was expected of each subcontractor, and why and how the 3D model would be used. Because the joist design was such an important part of the overall process, bidding was opened in September for the steel joist fabrication package. The pre-qualification process included a requirement to work as an integrated team using a parametric 3D model.
The steel joist fabrication package went to New Millennium Building Systems, largely because of its BIM capabilities. MBJ created a construction BIM model using Target’s Revit model as a starting point, converting to Tekla Structures using the IFC file format. After quality control checking, this model was delivered to New Millennium in lieu of 2D drawings. The structural joist fabricator was able to use the generic joist elements, rather than having to redraw them, to begin the process for exact steel joist design and modeling.
Using New Millennium’s Dynamic Joist design component, a plug-in for Tekla Structures that helps automate this integrated process, the Fort Wayne, Ind., fabricator was able to quickly design the steel joists, insert “real” fabrication-ready joists and bridge in the shared Tekla model, and produce 2D shop drawings. The geometry and profiles of the joists were determined by New Millennium’s design, detailing, and fabrication standards.
“The parametric Dynamic Joist plug-in will model a joist from user-specified points,” said Ricky Gillenwater, IT director at New Millennium and developer of the plug-in. “What users have initially is a generic representation of a joist, consisting of generic material and geometry. The component transforms into an as-built representation as it goes through the joist detailing and design process, which is what we gave MBJ.”
The time period from the award of the steel joist package to the approval of shop drawings sent back to New Millennium for fabrication from the integrated design team, including calculations and integrated 3D geometry, was three-and-half weeks.
“That’s unheard of to have an approved set of calculations and shop drawings back in the joist manufacturer’s hands ready for fabrication,” said Jerod Hoffman, principal and structural engineer at MBJ. Referring to the structural steel package (including miscellaneous metals), Hoffman said this is the first Target store ever bid to steel fabricators off of completed shop drawings.
“Instead of providing just 2D construction documents, we gave Whiting-Turner the model, the bill of materials that listed every nut and bolt, and approved shop drawings, which the fabricator could use to supersede the 2D drawings and specifications,” Hoffman said. “The hope is that because we’re providing them exact quantities, the quality, competitiveness, and value of the bids they receive will be better than using 2D design drawings only.” Hoffman says he expects “zero change orders” with regard to coordination issues in the steel because “they’ve all been worked out.”
Through the integrated design process, MBJ also discovered early on that some of the load-bearing steel joists had to be fabricated and scoped in a way that changed the original plan for the steel embeds in the store’s concrete walls. As a result, the new embeds were correctly put out on the bid documents for the structural steel and concrete packages and will, therefore, be bid on as an already-coordinated first competitive cost.
Grading and site work on the project began in late December, and Whiting-Turner is already working with its subcontractors on 4D scheduling and cost estimation. The contractor plans to use Navisworks to coordinate the Tekla Structures steel model, as well as other models for the mechanical, electrical, and other subcontractors. Although Revit is not the model being used to create shop drawings and other deliverables for the subcontractors, Whiting-Turner will use the Revit design model in conjunction with fabrication models to perform clash detection and check quality control.
“The type of sub we’re seeing bid on the project is more sophisticated,” said Reema Zuberi, project manager and regional VDC coordinator at Whiting-Turner. “They are able to work with 3D models and are comfortable working together earlier in the process.”
The store is expected to be ready for its grand opening in October. BD+C
Target: Expanding BIM Design HorizonsTarget’s in-house property development operation includes more than 60 architects, 80 engineers, and 30 construction managers. The retailer, with 1,743 stores in every state except Vermont, has cut back its new openings due to the weak economy, but still expects to open 30 new stores in 2011, including the San Clemente, Calif., project. Store design is overseen by senior vice president Rich Varda, an architect whose work outside of Target includes the recently opened Musical Instrument Museum in Phoenix. Utilizing BIM and prototype designs for efficient design and construction is a key part of Target’s expansion strategy. “Twenty-ten was a demarcation from a 2D design deliverable to a fully 3D design for all store designs,” said Brad Koland, group manager of structural engineering at Target. “We definitely saw that the first incremental benefit of using Revit came from clash detection. There was a cost savings associated with moving from a 2D platform to a 3D one.” Target has, over the years, experimented with many different ways of procuring construction materials. Getting a better idea of how to use the area around steel joists was one area where, Koland said, Target wanted to build a foundation of knowledge for what is possible. “We have a really robust owner-provided construction material and equipment program,” he said. “We source some general construction materials but not too many. So, this isn’t necessarily a strong drive toward materials sourcing, but we wanted to see what technology would allow us to do. Sourcing is one of the possible outcomes, but really getting better clarity around what’s inside our building is the primary driver for this investigation.” |
Related Stories
| Aug 11, 2010
ZweigWhite names its fastest-growing architecture, engineering, and environmental firms
Management consulting and research firm ZweigWhite has identified the 200 fastest-growing architecture, engineering, and environmental consulting firms in the U.S. and Canada for its annual ranking, The Zweig Letter Hot Firm List. This annual list features the design and environmental firms that have outperformed the economy and competitors to become industry leaders.
| Aug 11, 2010
SSOE, Fluor among nation's largest industrial building design firms
A ranking of the Top 75 Industrial Design Firms based on Building Design+Construction's 2009 Giants 300 survey. For more Giants 300 rankings, visit http://www.BDCnetwork.com/Giants
| Aug 11, 2010
Guggenheim to host live online discussion of Frank Lloyd Wright exhibition
The Solomon R. Guggenheim Museum launches the Guggenheim Forum, a new series of moderated online discussions among experts from a variety of fields that will occur in conjunction with major museum exhibitions.
| Aug 11, 2010
Best AEC Firms of 2011/12
Later this year, we will launch Best AEC Firms 2012. We’re looking for firms that create truly positive workplaces for their AEC professionals and support staff. Keep an eye on this page for entry information. +
| Aug 11, 2010
Report: Building codes and regulations impede progress toward uber-green buildings
The enthusiasm for super green Living Buildings continues unabated, but a key stumbling block to the growth of this highest level of green building performance is an existing set of codes and regulations. A new report by the Cascadia Region Green Building Council entitled "Code, Regulatory and Systemic Barriers Affecting Living Building Projects" presents a case for fundamental reassessment of building codes.
| Aug 11, 2010
Call for entries: Building enclosure design awards
The Boston Society of Architects and the Boston chapter of the Building Enclosure Council (BEC-Boston) have announced a High Performance Building award that will assess building enclosure innovation through the demonstrated design, construction, and operation of the building enclosure.
| Aug 11, 2010
Portland Cement Association offers blast resistant design guide for reinforced concrete structures
Developed for designers and engineers, "Blast Resistant Design Guide for Reinforced Concrete Structures" provides a practical treatment of the design of cast-in-place reinforced concrete structures to resist the effects of blast loads. It explains the principles of blast-resistant design, and how to determine the kind and degree of resistance a structure needs as well as how to specify the required materials and details.