The long-term impact of the COVID-19 pandemic will transform future building design practices to prioritize public health and mitigate the risk of spreading infection. Technologies that have long been utilized in hospitals and medical centers, but have not been widely embraced in other sectors due to additional costs, may see wider integration in other public buildings.
Healthcare settings have more rigorous cleaning regimens to control hospital acquired infections (HAI’s) and supplement hand cleaning of rooms with automatic and systems-based approaches. This method can remove the chance of human error. Here are four techniques and technologies that can be easily adapted from healthcare facilities to other settings:
Some tools and techniques used to keep hospitals clean could soon be incorporated into other public buildings.
1. Clearing the air
The use of High Efficiency Particulate Air (HEPA) filtration plays a key role in limiting the transmission of diseases. COVID-19 is transmitted from human to human by droplets expelled from the lungs via aerosols. This is caused from activities such as breathing, coughing, sneezing, smoking, and vaping. In still air, these droplets are found to fall to the ground within six feet of the person generating them. However, airstreams created by HVAC systems can transport them farther. While HEPA filters are only partially effective against viruses due to their size, they can trap the larger droplets on which the virus travels. It is important to place this type of filtration in air streams before the droplets can be deposited in HVAC units. These units are commonly found in hotels, senior housing facilities, condominiums, apartment buildings, residential additions and sunrooms, and cannot be easily disinfected.
Hospitals and commercial buildings have also employed the use of high-output germicidal ultraviolet (GUV). GUV uses short-wavelength ultraviolet (UV-C) within air-handling units (AHU’s) to reduce airborne pathogens. The combination of HEPA filtration and UV-C significantly reduces the risk of spreading viruses.
2. Germicidal Ultraviolet
GUV also has other applications for removing pathogens. UV-C kills organisms and inactivates viruses on the surface of objects. So, its effectiveness depends upon line-of-sight and distance from the source—areas not directly exposed are not disinfected. Technology using UV-C includes:
- High-output UV-C robots that can decontaminate a room in approximately 30 minutes. These robots have proven highly effective for sanitizing patient rooms in hospitals. However, they cannot be used in occupied spaces because the intensity of light and time of exposure will cause damage to human skin and eyes
- Upper air fixtures using high-output UV-C lamps with louvers that can disinfect the air of an occupied space. The fixtures are mounted on the wall, ceiling, or in corners of rooms and have louvers that direct the light towards the ceiling and use convection forces to disinfect air above occupants.
To improve public health and safety, these practices will need to be more widely incorporated into both design and business operations.
3. Vaporized hydrogen peroxide
Another room sanitation method used in healthcare settings is vaporized hydrogen peroxide (VHP) delivered via mist foggers or robots. This technology creates a cloud of hydrogen peroxide which is 80-90 percent effective in killing microorganisms.
Like high-output UV-C systems, occupancy without personal protective equipment (PPE) is not possible. If occupants must be present, buildings can use ionized hydrogen peroxide (iHP) systems which create a plasma that has the same efficacy as VHP but does not require PPE. iHP systems can be installed in central AHU’s or as terminal units within an occupied space. They appear to be the most effective—and easily employed—method for surface and airstream disinfection. This is a newer technology than VHP and has not had widespread implementation to date. Since spaces treated with iHP can be simultaneously occupied, it is a logical choice for retail and commercial settings.
4. Antimicrobial surfaces
It is currently reported that the coronavirus can live for hours to days on touch surfaces, such as door handles, grab bars, and countertops. It will live for up to five days on common hardware metal finishes, but only about four hours on copper and silver ion components. These finishes have been available for over a decade, but the slightly higher cost for these materials and perceived lack of widespread need for antimicrobial touch surfaces has made their use rather limited.
The use of naturally antimicrobial materials for high-touch points will likely be incorporated into future building designs.
The installation of automatic door operators—although an added cost for projects—is another simple approach employed in hospital pharmacies and high-use entrances/exits to limit the transmission of contaminants. Post-pandemic design practices should consider their use to reduce the likelihood of transmission by touch.
The broader impact on design
Technology can help us reduce the risk of spreading communicable diseases. But, it needs to be combined with social distancing and sanitation of touch surfaces to control the spread of viruses like COVID-19. To improve public health and safety, these practices will need to be more widely incorporated into both design and business operations.
Specifically, we need to rethink how we integrate social distancing in the design of our buildings with elements like:
— Making aisles wider in retail settings
— Moving away from 24/7 operation of retail operations to allow for daily deep cleaning
— Planning for one-way flow through public spaces
— Reducing the density of seating in restaurants and promoting take-out orders
— Providing larger cubicles in open office planning
— Supporting deep cleaning of hoteling areas between occupants
— Creating smaller classroom sizes in schools and promoting more widespread distance learning
— Providing larger common areas in public venues along with temperature-controlled and weather-protected outdoor common areas
— Moving away from window A/C units in hospitality, educational, and residential spaces.
We have the opportunity to apply the lessons we have learned from fighting this pandemic to our future building planning, designs, and operations. These changes will ultimately improve the quality and safety of our built environment while helping prevent the rapid spread of future diseases.
More from Author
Stantec | Jul 18, 2024
Why decarbonizing hospitals smartly is better than electrification for healthcare design
Driven by new laws, regulations, tariffs, ESG goals, and thought leaders in the industry itself, healthcare institutions are embracing decarbonization to meet 2050 goals for emissions reductions.
Stantec | Jun 18, 2024
Could ‘smart’ building facades heat and cool buildings?
A promising research project looks at the possibilities for thermoelectric systems to thermally condition buildings, writes Mahsa Farid Mohajer, Sustainable Building Analyst with Stantec.
Stantec | Jun 8, 2024
8 ways to cool a factory
Whichever way you look at it—from a workplace wellness point of view or from a competing for talent angle—there are good reasons to explore options for climate control in the factory workplace.
Stantec | Apr 18, 2024
The next destination: Passive design airports
Today, we can design airports that are climate resilient, durable, long-lasting, and healthy for occupants—we can design airports using Passive House standards.
Stantec | Mar 18, 2024
A modular construction solution to the mental healthcare crisis
Maria Ionescu, Senior Medical Planner, Stantec, shares a tested solution for the overburdened emergency department: Modular hub-and-spoke design.
Stantec | Nov 20, 2023
8 strategies for multifamily passive house design projects
Stantec's Brett Lambert, Principal of Architecture and Passive House Certified Consultant, uses the Northland Newton Development project to guide designers with eight tips for designing multifamily passive house projects.
Stantec | Apr 10, 2023
Implementing human-centric design in operations and maintenance facilities
Stantec's Ryan Odell suggests using the human experience to advance OMSF design that puts a focus on wellness and efficiency.
Stantec | Jul 6, 2022
5 approaches to a net zero strategy that communities can start right now
Whether your community has started on a plan or is still considering net zero, now is the time for all of us to start seriously addressing climate change.
Stantec | Feb 14, 2022
5 steps to remake suburbs into green communities where people want to live, work, and play
Stantec's John Bachmann offers proven tactic for retrofitting communities for success in the post-COVID era.
Stantec | Feb 8, 2022
How gaming technology is changing the way we design for acoustics
Adding 3D sound from gaming engines to VR allows designers to represent accurate acoustic conditions to clients during design.