flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

Medical Data Center Sets High Bar for BIM Design Team

Medical Data Center Sets High Bar for BIM Design Team

The construction of a new data center becomes a test case for BIM’s ability to enhance project delivery across an entire medical campus.


By By Jeff Yoders, Contributing Editor | February 10, 2011
This article first appeared in the February 2011 issue of BD+C.

In the last six years, the University of Arkansas for Medical Sciences, in Little Rock, has experienced unprecedented growth, including the development of more than $425 million in new or expanded facilities. UAMS is Arkansas’s only comprehensive academic health center, with five colleges, a graduate school, a new 550,000-sf hospital tower (completed in 2009), six centers of excellence, and a statewide network of regional centers. It’s also the state’s largest public employer, providing jobs to more than 10,000 Arkansas healthcare professionals.

But by 2009 all of that growth was taking its toll on the campus’s existing data centers, which had to securely store most of the hospital system’s sensitive medical records.

“In the last five years we’ve had about 35% growth,” said Mark Kenneday, UAMS’s Vice Chancellor of Campus Operations. “Our old main data center was pretty crude, a reflection of the growth we experienced.” The medical center’s IT infrastructure program, he explained, was being developed around the idea of a three-legged stool, with redundancies in all three data centers; if any single location were to go down, another of the centers could pick up the slack.

However, only two of the data center “legs” were in place. Clearly, a new primary data center was needed. That’s when building information modeling came into play.

Rather than just plan and construct another building to house massive racks of servers for a quick fix, Kenneday and the operations team at UAMS looked at the new data center as an opportunity to expand the university’s BIM design standards and create a building that would efficiently serve the UAMS campus for at least the next hundred years.

Even before Kenneday arrived at UAMS in 2007, the medical center required Building Teams to submit designs in Autodesk’s Revit BIM platform. But the Primary Data Center project expanded the 3D BIM requirement in its contracts and bid documents to the entire Building Team. All general contractors had to bid the project as a BIM carry-through. BIM precertification was also required of every architect and engineer on the project.

“We really pushed them into a corner so they would take the responsibility,” Kenneday said. “We already had all of our schematic designs done in BIM. A more profound delivery was a very natural next step. When you realize you have this giant data repository you don’t know what to do with, the BIM model allows you to put some of that information into data knowledge for decision-making down the road.”

MEP and structural design engineer TME Engineering, Little Rock, led the design team for the $4.9 million, 15,000-sf PDC with Kirchner Architecture, also of Little Rock, providing the architectural design. Kenneday said that, notwithstanding the importance of the architectural aspects of the building, it was the information stored inside the PDC that was “vitally important” to the university, which is why the engineers were given primacy on the design team.

In addition to requiring an efficient power usage efficiency (PUE) rating of 4.0 for the project, UAMS further demanded that the Building Team turn over its completed models for use in managing the facility management and providing emergency first response once the building was completed.

“When they deliver their BIM model, it becomes a UAMS product,” Kenneday said. “It becomes a part of our OEM delivery. We’ve just now started to get a repository of BIM information for our latest projects. We have a unique position here in Little Rock, in that we’re the big dog when it comes to healthcare construction, so we can do that.”

TME and Kirchner delivered a design that featured a portfolio of engineering systems: variable volume air handling units to condition the air in the Primary Data Center’s raised floor area, hot aisle enclosures to minimize cold air bypass, a dedicated ventilation unit to provide humidity control, and a chilled water system—in fact, a variable primary low-flow, high-delta-T chilled water system with energy-efficient water-cooled chillers. The heat from the data center’s raised floor area is transferred from the chilled water system to the heating water system using a heat pump chiller/heater; it then is used to heat other buildings on campus.

“We were going for a high energy rating and part of that was helped by the BIM process,” said Mark Mergenschroer, BIM development coordinator at TME. “Architectural, MEP, and structural models were all done in Revit, and it was a learning process for some of the team, since this was the first full BIM project in Arkansas. Was our model perfect all of the time? No, but the team effort and the process was.”

General contractor Vratsinas Construction Co., Little Rock, worked with its subcontractors to provide detailed shop drawings based on information from the Revit models. Project stakeholders and Building Team members could virtually walk through the planned data center and comment on the design thanks to a virtual model made in the Unity 2 gaming engine. (To try the walk-through, go to: http://www.tmecorp.com/unity2.)

The project was completed on schedule and opened last October, 18% under budget. TME was able to beat the university’s PUE target of 4.0, bringing the project in with a PUE rating of 1.36.  More importantly, the data center can increase its storage capacity as UAMS continues to grow. The initial buildout uses only about 50% of its server capacity, with the ability to add another 50% as IT services are expanded. The final Revit models are being used for facilities management and planning new UAMS infrastructure.

That capacity will be needed, as the period of growth has not finished at UAMS. Construction started last year on a four-floor expansion to the Donald W. Reynolds Institute on Aging, an existing, four-story Alzheimer’s disease research and treatment facility on the Little Rock campus. Planning is also under way to renovate 24,000 sf in the former main hospital building for the new UAMS Center for Clinical and Translational Research. Both projects use the same BIM requirements used on the Primary Data Center.

“I would prefer for our campus to take a lead position when it comes to BIM,” Kenneday said. “We want to be on the front of the train, rather than on the back. Or under it.” BD+C

Be sure to catch the latest blog from Jeff (“BIMBoy”) Yoders at: www.BDCnetwork.com.

Related Stories

| Nov 15, 2010

Gilbane to acquire W.G. Mills, Inc.

Rhode Island-based Gilbane Building Company announced plans to acquire W.G. Mills, Inc., a construction management firm with operations based in Florida. The acquisition will dramatically strengthen Gilbane’s position in Florida’s growing market and complement its already established presence in the southeast.

| Nov 11, 2010

Saint-Gobain to make $80 million investment in SAGE Electrochromics

Saint-Gobain, one of the world’s largest glass and construction material manufacturers, is making a strategic equity investment in SAGE Electrochromics to make electronically tintable “dynamic glass” an affordable, mass-market product, ushering in a new era of energy-saving buildings.

| Nov 11, 2010

Saint-Gobain to make $80 million investment in SAGE Electrochromics

Saint-Gobain, one of the world’s largest glass and construction material manufacturers, is making a strategic equity investment in SAGE Electrochromics to make electronically tintable “dynamic glass” an affordable, mass-market product, ushering in a new era of energy-saving buildings.

| Nov 11, 2010

USGBC certifies more than 1 billion square feet of commercial space

This month, the total footprint of commercial projects certified under the U.S. Green Building Council’s LEED Green Building Rating System surpassed one billion square feet. Another six billion square feet of projects are registered and currently working toward LEED certification around the world. Since 2000, more than 36,000 commercial projects and 38,000 single-family homes have participated in LEED.

| Nov 10, 2010

$700 million plan to restore the National Mall

The National Mall—known as America’s front yard—is being targeted for a massive rehab and restoration that could cost as much as $700 million (it’s estimated that the Mall has $400 million in deferred maintenance alone). A few of the proposed projects: refurbishing the Grant Memorial, replacing the Capitol Reflecting Pool with a smaller pool or fountain, reconstructing the Constitution Gardens lake and constructing a multipurpose visitor center, and replacing the Sylvan Theater near the Washington Monument with a new multipurpose facility.

| Nov 9, 2010

Just how green is that college campus?

The College Sustainability Report Card 2011 evaluated colleges and universities in the U.S. and Canada with the 300 largest endowments—plus 22 others that asked to be included in the GreenReportCard.org study—on nine categories, including climate change, energy use, green building, and investment priorities. More than half (56%) earned a B or better, but 6% got a D. Can you guess which is the greenest of these: UC San Diego, Dickinson College, University of Calgary, and Dartmouth? Hint: The Red Devil has turned green.

| Nov 9, 2010

12 incredible objects being made with 3D printers today

BD+C has reported on how 3D printers are attracting the attention of AEC firms. Now you can see how other creative types are utilizing this fascinating printing technology. Among the printed items: King Tut’s remains, designer shoes, and the world’s smallest Rubik’s Cube.

| Nov 9, 2010

U.S. Army steps up requirements for greening building

Cool roofs, solar water heating, and advanced metering are among energy-efficiency elements that will have to be used in new permanent Army buildings in the U.S. and abroad starting in FY 2013. Designs for new construction and major renovations will incorporate sustainable design and development principles contained in ASHRAE 189.1.

boombox1
boombox2
native1

More In Category


Urban Planning

Bridging the gap: How early architect involvement can revolutionize a city’s capital improvement plans

Capital Improvement Plans (CIPs) typically span three to five years and outline future city projects and their costs. While they set the stage, the design and construction of these projects often extend beyond the CIP window, leading to a disconnect between the initial budget and evolving project scope. This can result in financial shortfalls, forcing cities to cut back on critical project features.



Libraries

Reasons to reinvent the Midcentury academic library

DLR Group's Interior Design Leader Gretchen Holy, Assoc. IIDA, shares the idea that a designer's responsibility to embrace a library’s history, respect its past, and create an environment that will serve student populations for the next 100 years.

halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021