flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

New system from MIT may help buildings monitor stress and damage over time

Building Technology

New system from MIT may help buildings monitor stress and damage over time

The computational model is being tested on MIT’s Green Building.


By David Malone, Associate Editor | November 10, 2016

Photo: Lucy Li, Wikimedia Commons

A new computational model developed by researchers at MIT takes ambient vibrations and analyzes them to pick out features in the noise to give indications of a building’s stability, MIT News reports. The feedback can then be used to monitor the building for damage or mechanical stress. Think of it as getting your blood pressure or cholesterol checked regularly to find warning signs of future problems before they become too dire.

The model is being tested on the tallest building on the MIT campus, the 21-story Green Building, a research building made of reinforced concrete. The researchers attached 36 accelerometers to selected floors from the building’s foundation to its roof to record vibrations.

But in order for these recordings to actually serve a purpose, the team needed to figure out how to take the data and link it to the health characteristics of the building, according to Oral Buyukozturk, a professor in MIT’s Department of Civil and Environmental Engineering.

Their solution was to create a computer simulation of the Green Building as a finite element model. MIT News describes this type of model as “a numerical simulation that represents a large physical structure, and all its underlying physics, as a collection of smaller, simpler subdivisions.” The researchers then added parameters to the model, such as the strength and density of concrete walls, slabs, beams, and stairs in each floor.

With all of this done, the researchers are able to then add something like the vibration caused by a passing truck to the simulation in order to see how the model predicts the building and its elements would respond. To make the model as accurate as possible, data from the Green Building's accelerometers was mined and analyzed for key features relating to the building’s stiffness and other indicators of health.

The more data that is added over time, the more intelligent the system becomes. The researchers say they are confident that any real life damage in the building will show up in the system.

This type of model will be especially useful to immediately see, after an event such as an earthquake, if and where there is damage to the building.

The researchers’ vision is for a system such as this to be outfitted on all tall buildings, making them intelligent enough to monitor their own health and provide increased resiliency.

Related Stories

| Oct 6, 2011

GREENBUILD 2011: NEXT Living EcoSuite showcased

  Tridel teams up with Cisco and Control4 to unveil the future of green condo living in Canada.

| Oct 5, 2011

GREENBUILD 2011: Johnson Controls announces Panoptix, a new approach to building efficiency

Panoptix combines latest technology, new business model and industry-leading expertise to make building efficiency easier and more accessible to a broader market.

| Oct 5, 2011

GREENBUILD 2011: Software an architectural game changer

Interactive modeling software transforms the design­build process. 

| Oct 5, 2011

GREENBUILD 2011: Sustainable construction should stress durability as well as energy efficiency

There is now a call for making enhanced resilience of a building’s structure to natural and man-made disasters the first consideration of a green building. 

| Oct 5, 2011

GREENBUILD 2011: Solar PV canopy system expanded for architectural market

Turnkey systems create an aesthetic architectural power plant. 

| Oct 4, 2011

GREENBUILD 2011: Johnsonite features sustainable products

Products include rubber flooring tiles, treads, wall bases, and more. 

| Oct 4, 2011

GREENBUILD 2011: Wall protection line now eligible to contribute to LEED Pilot Credit 43

The Cradle-to-Cradle Certified Wall Protection Line offers an additional option for customers to achieve LEED project certification.

| Oct 3, 2011

Balance bunker and Phase III projects breaks ground at Mitsubishi Plant in Georgia

The facility, a modification of similar facilities used by Mitsubishi Heavy Industries, Inc. (MHI) in Japan, was designed by a joint design team of engineers and architects from The Austin Company of Cleveland, Ohio, MPSA and MHI.

| Oct 3, 2011

Cauceglia to lead Allsteel’s global accounts

Cauceglia is responsible for developing new global business strategies and expanding existing business within the Fortune 500 sector.

| Sep 29, 2011

Kohler supports 2011 Solar Decathlon competition teams

Modular Architecture > In a quest to create the ultimate ‘green’ house, 20 collegiate teams compete in Washington D.C. Mall.

boombox1
boombox2
native1

More In Category



Engineers

Navigating battery energy storage augmentation

By implementing an augmentation plan upfront, owners can minimize potential delays and unforeseen costs when augmentation needs to occur, according to Burns & McDonnell energy storage technology manager Joshua Crawford.


3D Printing

3D-printed construction milestones take shape in Tennessee and Texas

Two notable 3D-printed projects mark milestones in the new construction technique of “printing” structures with specialized concrete. In Athens, Tennessee, Walmart hired Alquist 3D to build a 20-foot-high store expansion, one of the largest freestanding 3D-printed commercial concrete structures in the U.S. In Marfa, Texas, the world’s first 3D-printed hotel is under construction at an existing hotel and campground site.

halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021