Although wood is commonly used as a finish material in nonresidential buildings, more and more Building Teams are specifying wood as a structural material to accompany steel or concrete—or sometimes to be used entirely on its own. Recent studies show that wood offers such benefits as speed of construction, cost effectiveness, durability, and sustainability (see box, page 53). Structural wood products such as cross-laminated timber (CLT) and parallel strand lumber (PSL) are attracting the attention of architects, structural engineers, and contractors.
Research by the National Science Foundation and other partners on the performance of wood buildings during seismic events—the so-called NEESWood Capstone tests—is yielding promising results. For example, Japanese researchers built a seven-story wood-frame residential structure on a shake table and subjected it to Kobe-level earthquake conditions—6.9 on the Richter scale (see http://www.apawood.org/level_b.cfm?content=srv_newsinfo_34). “There was virtually no damage to the building,” says Dwight Yochim, national director of WoodWorks, an alliance of North American wood associations, headquartered in Vancouver, B.C.
Yochim says that one of the concerns with building with concrete or steel is the temptation to overbuild to compensate for the mass of the material itself. “Wood has many redundant connections and it’s light,” he says, “so when an earthquake hits, it doesn’t have the same impact on the building” as it would with a steel or concrete structure.
Yochim says some glulam manufacturers are adding steel straps to their beams to help carry the load over long spans. The Richmond Olympic Oval, built for the 2010 Winter Olympics in Vancouver, B.C., has a wood roof with a clear span of more than 300 feet. Part of the roof is constructed of double Douglas-fir glulam beams reinforced with steel straps.
“Wood is a viable building product and a good alternative to conventional construction,” says Blakely C. Dunn, AIA, NCARB, principal of CADM Architecture, El Dorado, Ark. “It’s easy to erect, and it’s easy to correct something that’s incorrect.” He notes that wood usually has a shorter lead time for delivery compared to other structural materials: “You don’t have to wait weeks for it to show up at the job site.”
Applications for structural wood expand
- Architects and engineers are substituting wood framing for steel and concrete as a cost-saving measure.
- Manufacturers are adding steel straps to glulam beams to help carry loads over long spans.
- Cross-laminated timber is making its debut in the U.S. as an innovative framing material for buildings up to 10 stories in height.
- Heavy-timber construction showcases the versatility, strength, and beauty of wood and can help keep projects on budget.
CROSS-LAMINATED TIMBER CROSSES THE POND
Cross-laminated timber has been widely used in Europe since the 1980s but is not well known in North America. CLT panels are manufactured by stacking multiple layers of wood, each about 20 to 38 millimeters in thickness, at right angles and gluing them together in a press. Typical widths are 0.6, 1.2, and 2.95 meters (up to 4 meters), in lengths up to 24 meters.
The cross-lamination process minimizes swelling and shrinkage and increases resistance. CLT panels are used for floor, wall, and roof systems. Pre-assembled wall sections can be lifted into place with cranes and attached to each other with screws or steel brackets.
“CLT competes head-to-head with concrete buildings up to six stories,” says Yochim. So far, the tallest CLT structure built in Europe is nine stories. Researchers in Austria are testing something called the life cycle tower, a combination of glulam beams, CLT, and concrete slabs that could go much higher. “They’re all prefabricated assemblies,” says Yochim. “Once you’ve got your foundation down, the rest of the building just bolts together.”
The first nonresidential CLT building to be constructed in the U.S., a 78-foot church bell tower, was completed in December 2010 in Gastonia, N.C. The tower has a 12x12-foot base and wood panels of varying lengths, which provide the strength and stability of concrete but are much lighter, says Michael DeVere, principal of MDS10 Architects, Asheville, N.C. The foundation is three feet deep.
To better analyze the stresses inflicted by wind and seismic loading and swinging bells, Medlock & Associates Engineering, Asheville, N.C., modeled the tower using RISA-3D design software. This enabled the engineers to keep the project within its $450,000 budget. For ease of assembly, they used a panelized system and kept connection variations to a minimum.
The panels were prefabricated in Austria, reducing the amount of on-site labor and virtually eliminating job-site waste. Tim Richards, vice president of general contractor M-Y Construction of Tryon, N.C., says a comparable steel structure would have taken three to four weeks to complete. With CLT, it took five-and-a-half days.
DeVere points out that CLT is also a green material, accounting for significantly less greenhouse gas emissions than concrete or steel. He also likes its creative nature. “It can free you from many of the constrictions of conventional construction,” he says. “Depending on the design, you can eliminate lintels and headers as well as columns and deep horizontal framing members.” Exterior wall panels distribute the bearing load evenly across the entire length, so most point loads can be dispersed, avoiding piers and pad footings and reducing the amount of concrete in the foundation.
“Some have described CLT as ‘Legos on steroids,’” says DeVere. “We see it as a game changer for the construction industry.” He and his business partner, Crawford Murphy, hope to open a CLT manufacturing facility in the U.S.
HEAVY TIMBER PLAYS LEAD ROLE IN THEATER
In British Columbia, the use of heavy timber in nonresidential projects is commonplace. But the concept raised eyebrows when first proposed for Arena Stage at the Mead Center for American Theater, in Washington, D.C.
“The local building authorities were skeptical at first about the use of timber for large institutional assembly buildings,” says Michael Heeney, MAIBC, FRAIC, LEED AP, principal of Bing Thom Architects, Vancouver, B.C. “They were concerned about flammability.” The firm and its fire engineers, LMDG, presented a fire report and char analysis which showed that the effects of a fire on the structure would be minimal. In fact, charring on the outside of the wood columns would actually protect the interior of the wood.
One of the project goals was to double the space of Arena Stage and the adjacent Kreeger Theater. There was no money in the budget for finishes, yet the structure had to be beautiful, so wood made perfect sense as both a structural and finish material. The architects wrapped the two theaters with an insulated glass wall, providing acoustic separation from nearby Reagan National Airport and highway traffic.
StructureCraft Builders, a specialty timber-frame design/builder based in Delta, B.C., crafted 18 giant columns out of parallel strand lumber (PSL) for the perimeter of the Arena Stage façade. The columns are unreinforced, solid engineered wood that use no internal steel support. Bing Thom Architects designed the kinds of connections used in a steel-frame building so that local steelworkers could install them.
“Wood is a very versatile material, but you need to spend time making the connections economical by encouraging as much repetition as possible,” says Heeney. “The PSL columns at Arena Stage connect to specially designed iron castings that would have been prohibitively expensive had we made only one.”
WOOD FRAMING SAVES $2.7 MILLION FOR SCHOOL
When the El Dorado (Ark.) School District needed a new high school for 1,600 students, the Building Team compared the cost of structural steel, precast concrete, and wood as a framing system.
Blake Dunn of CADM Architecture says the school’s construction budget was $134.78/sf. Had it been built with steel and masonry, the cost would have been $50/sf too high. Wood framing saved $2.7 million.
The original design intent—to use wood for exposed areas inside the building—was extended to concealed areas such as columns, beams, demising walls, office partitions, exterior walls, floors and roof systems. The structural components are predominately Southern yellow pine. Interior doors are maple; the paneling and trim are red oak. “The auditorium has large acoustical deflectors on the side walls that are made out of maple plywood,” he says. “They’re angled in such a way as to tune the space.” +
MORE ON THE BENEFITS OF STRUCTURAL WOOD
“Science Supporting the Economic and Environmental Benefits of Using Wood and Wood Products in Green Building Construction,” Michael A. Ritter, Kenneth Skog, and Richard Bergman, USDA Forest Service.
“Wood Products Used on the Construction of Low-Rise Nonresidential Buildings in the United States, 2008,” David B. McKeever, USDA Forest Service.
“Maximizing Forest Contributions to Carbon Mitigation” (CORRIM Fact Sheet, March 2009).
“Product and Process Environmental Improvement Analysis for Buildings (Carbon Life Cycle Assessment)” (CORRIM Fact Sheet, December 2009).
Related Stories
Cultural Facilities | Aug 21, 2024
Baltimore’s National Aquarium opens 10,000-sf floating wetland that mimics the harbor’s original tidal marsh habitat
The National Aquarium in Baltimore has opened the National Aquarium Harbor Wetland, a 10,000-sf floating wetland that mimics the Inner Harbor’s original Chesapeake Bay tidal marsh habitat. Located between Piers 3 and 4 on Baltimore’s Inner Harbor, the $14 million project features more than 32,000 native shrubs and marsh grasses.
Mixed-Use | Aug 21, 2024
Adaptive reuse of a Sears store becomes luxury mixed-use housing
6 Corners Lofts at 4714 W Irving Park Road, Chicago, Ill., opened in March of 2024 as a 394,000-sf adaptive reuse project born out of a former Sears store.
Building Materials | Aug 19, 2024
Federal 'buy clean' construction materials label program unveiled
The U.S. Environmental Protection Agency announced a plan for implementing a new label program to boost American production of more climate-friendly construction materials and products. The label program will prioritize steel, glass, asphalt and concrete.
Museums | Aug 19, 2024
The Tampa Museum of Art will soon undergo a $110 million expansion
In Tampa, Fla., the Tampa Museum of Art will soon undergo a 77,904-sf Centennial Expansion project. The museum plans to reach its $110 million fundraising goal by late 2024 or early 2025 and then break ground. Designed by Weiss/Manfredi, and with construction manager The Beck Group, the expansion will redefine the museum’s surrounding site.
AEC Tech | Aug 19, 2024
Harnessing AI to revolutionize architectural design and creativity
Architects are wondering if AI will replace us. For Vessel, the gains offset the fear. We believe there is wisdom in the unattributed quote, “You won’t lose your job to AI. You will lose your job to someone using AI.”
Reconstruction & Renovation | Aug 19, 2024
Movement to protect historic buildings raises sharp criticism
While the movement to preserve historic buildings has widespread support, it also has some sharp critics with well-funded opposition groups springing up in recent years. Some opponents are linked to the Stand Together Foundation, founded and bankrolled by the Koch family’s conservative philanthropic organization, according to a column in Governing magazine.
Government Buildings | Aug 19, 2024
GSA posts new RFI for enabling energy efficiency, decarbonization in commercial buildings
The U.S. General Services Administration (GSA), in collaboration with the U.S. Department of Energy, recently released a new Request For Information (RFI) focused on enabling energy efficiency and decarbonization in commercial buildings. GSA wants to test innovative technologies through GSA’s Center for Emerging Building Technologies.
MFPRO+ New Projects | Aug 16, 2024
At 60 stories, the Paramount multifamily development will stand as Nashville’s tallest high rise
When complete, the 60-story Paramount building, at 750 feet high, will be the tallest high rise tower in Nashville, Tenn., surpassing the city’s current record holder, the 617-foot AT&T Building. The $390 million Paramount project recently launched condo sales after securing more than $230 million in construction financing.
Urban Planning | Aug 15, 2024
New York City begins first large-scale porous pavement installation
New York City is installing its first large-scale porous pavement installation along seven miles of roadway in Brooklyn. The project will keep 35 million gallons of stormwater out of the combined sewer system each year, according to a news release.
Urban Planning | Aug 15, 2024
The magic of L.A.’s Melrose Mile
Great streets are generally not initially curated or willed into being. Rather, they emerge organically from unintentional synergies of commercial, business, cultural and economic drivers. L.A.’s Melrose Avenue is a prime example.