Federal and state incentives have sparked renewed interest in solar photovoltaic systems as a way for K-12 schools to lower their utility bills and, at the same time, educate students about the benefits of solar and other alternative energy sources.
Solar PV providers in California, Colorado, Massachusetts, New Jersey, and Utah are partnering with school districts to install solar equipment and develop a teaching curriculum. Funding can come from a variety of government and private sources, with the bulk coming from the American Reinvestment and Recovery Act of 2009.
Some organizations are sponsoring their own solar-school initiatives in conjunction with the National Energy Education Development Project (NEED). The Walmart Foundation is partnering with NEED and the Foundation for Environmental Education to implement solar schools in five cities: Chicago, Los Angeles, Minneapolis, Seattle, and Washington, D.C.
UTAH PUTS THE SUN TO WORK
Utah’s Solar for Schools program was launched in 2010, after the state received ARRA funding to install and promote renewable energy. The Salt Lake City office of Johnson Controls, Inc. won a $3 million bid to install solar in 73 Utah schools. Thus far, 55 installations had been completed.
Oscar Rangel, JCI’s manager of public-sector solutions, based in Denver, says the company’s system will save $7.75 per watt, for a potential annual savings of $800-1,200. Rangel stresses that there’s more to the program than putting panels on the roof: “There’s also an educational component that involves the teachers, the kids, and the administration.”
In an intensive one-day workshop developed by Johnson Controls and the National Energy Foundation, teachers from around the Beehive State were exposed to curriculum materials that are correlated to state and national standards. NEF educators provide on-site teacher training geared to children from elementary school through high school.
“The labs are very hands-on, with activities that engage the students in learning not just about solar, but all different kinds of alternative energy,” says one participant, Laura Wheeler, who teaches middle school and high school in Morgan, Utah.
In one lab, students learn how to configure solar panels to generate the most power. (Another lab challenges them to see who can build the best wind generator.) There’s also a program where students patrol the building to monitor and report on energy usage. Johnson Controls is supplying software that links all the solar schools in Utah, allowing students to compare their school’s performance with that of others.
A typical installation consists of a 5.3-kW solar PV module, which can provide enough electricity to power the computer lab and a few classrooms or a library, Rangel says. That may not sound like much, but don’t tell that to teacher Laura Wheeler. “Even if we’re just lighting a library with solar, that’s a big deal to our school,” she says. “We’re in a very small, rural school district, so every penny we save goes a long way.”
CALIFORNIA RAMPS UP SOLAR IN SCHOOLS
With the California Solar Initiative, a statewide solar rebate program, California’s public sector is forecasted to save $2.5 billion from solar installations over the 30-year life of the systems. Educational institutions are expected to save approximately $1.5 billion of the total, according to SunPower Corp., a solar provider based in San Jose, Calif. The California School Boards Association recently announced Solar Schools, a program that supports school districts in developing efficient solar projects. Districts borrow ARRA funds and the federal government subsidizes the interest rate, meaning that loans are repaid at an average rate of 1.5%.
Interest in solar for schools has been accelerating due to a growing emphasis on energy conservation. “Currently, we have installations planned or under way in more than 90 schools,” says Bill Kelly, SunPower’s managing director. “It’s keeping us busy along with local electricians, steel fabricators, and erectors, so we’re also stimulating the local economy.”
The SunPower systems range from 100 kW to 1,000 kW. “The larger systems are for high schools,” Kelly says. “On average, in the schools we’re working with, 75-80% of the electric bill is offset or reduced by solar.”
Most solar panels are designed for parking lots rather than rooftops, he says. The panels form a canopy over the cars, with the secondary benefit of providing shade during hot weather.
As in Utah, California’s school districts want to not only invest in solar but also bring information about the technology into the classroom.
“Many of the school districts have engineering academies, and we’re working with them to develop a renewable energy curriculum,” says Kelly.
Recently, 16 high school students from the San Ramon Valley Unified School District completed a two-week course sponsored by SunPower.
“They learned everything about solar that you could cram into two weeks,” says SunPower’s Madeleine Maguire. “The idea is to create solar ambassadors so that they can teach their peers about this technology.”
CHECKING SOLAR’S AFFORDABILITY
With solar, first cost is still the issue for property owners and their Building Teams. The price of PV panels has fallen in the last two years due to greater efficiencies in manufacturing and technology, as well as increased competition among a growing number of suppliers.
According to the market intelligence firm IHS iSuppli, in 2009 the cost per watt for a PV solar panel was nearly $2.50. By 2015, that cost is expected to drop to as low as $1, or roughly $200 per panel. Installation prices, too, are expected to decrease about 10% a year—from $5 per watt to around $3 per watt by 2015, according to IHS. The worldwide PV market is poised to double by 2015, with the U.S. market growing steadily.
SunPower’s Kelly agrees that first cost is a constraint: “Even though solar has great economics for the long term, building owners need to watch their budgets.” Still, he urges Building Teams not to miss out on rebates by waiting for prices to go down. “In California, at least, the sooner you install it the bigger the incentive you get,” he says.
SIDEBAR: Science School Raises the Green Bar
The Walking Mountains Science Center in Avon, Colo., is on target to be certified LEED Platinum, but that wasn’t the Building Team’s primary goal. “We didn’t want to just talk the talk,” says Barry Monroe, LEED AP, project manager for local builder R.A. Nelson and Associates. “We wanted to do everything we could to make the building as green and as energy efficient as possible.” The facility will act as an experiential learning center for adults and children, as well as a model of sustainability.
Designed by Avon-based architects Zehren & Associates, the building produces 42% of its own electricity on site. PV solar panels on two south-facing roofs create energy, and a heat capture system harvests excess heat from the electrical equipment room and transfers it to domestic hot water. The sun also generates heat for the radiant in-floor system.
“Sun shades are part of the solar component and work in conjunction with daylighting to reduce heat gain inside the building,” Monroe says. The building is not air conditioned.
Students will monitor the building’s energy and water usage via a computerized dashboard. The solar system is expected to save about $6,000 a year in energy costs.
Related Stories
| Feb 11, 2011
Grocery store anchors shopping center in Miami arts/entertainment district
18Biscayne is a 57,200-sf urban retail center being developed in downtown Miami by commercial real estate firm Stiles. Construction on the three-story center is being fast-tracked for completion in early 2012. The project is anchored by a 49,200-sf Publix market with bakery, pharmacy, and café with outdoor seating. An additional 8,000 sf of retail space will front Biscayne Boulevard. The complex is in close proximity to the Adrienne Arsht Center for the Performing Arts, the downtown Miami entertainment district, and the Omni neighborhood, one of the city’s fast-growing residential areas.
| Feb 11, 2011
Chicago architecture firm planning one of China’s tallest towers
Chicago-based Goettsch Partners was commissioned by developer Guangzhou R&F Properties Co. Ltd. to design a new 294,570-sm mixed-use tower in Tianjin, China. The Tianjin R&F Guangdong Tower will be located within the city’s newly planned business district, and at 439 meters it will be one of China’s tallest buildings. The massive complex will feature 134,900 sm of Class A office space, a 400-key, five-star hotel, 55 condominiums, and 8,550 sm of retail space. The architects are designing the tower with multi-story atriums and a high-performance curtain wall to bring daylight deep into the building, thereby creating deeper lease spans. The project is currently finishing design.
| Feb 11, 2011
Two projects seek to reinvigorate Los Angeles County medical center
HMC Architects designed two new buildings for the Los Angeles County Martin Luther King, Jr., Medical Center as part of a $360 million plan to reinvigorate the campus. The buildings include a 120-bed hospital, which involves renovation of an existing tower and several support buildings, and the construction of a new multi-service ambulatory care center. The new facilities will have large expanses of glass at all waiting and public areas for unobstructed views of downtown Los Angeles. A curved glass entrance canopy will unite the two buildings. When both projects are completed—the hospital in 2012 and the ambulatory care center in 2013—the campus will have added more than 460,000 sf of space. The hospital will seek LEED certification, while the ambulatory care center is targeting LEED Silver.
| Feb 11, 2011
Sustainable community center to serve Angelinos in need
Harbor Interfaith Services, a nonprofit serving the homeless and working poor in the Harbor Area and South Bay communities of Los Angeles, engaged Withee Malcolm Architects to design a new 15,000-sf family resource center. The architects, who are working pro bono for the initial phase, created a family-centered design that consolidates all programs into a single building. The new three-story space will house a resource center, food pantry, nursery and pre-school, and administrative offices, plus indoor and outdoor play spaces and underground parking. The building’s scale and setbacks will help it blend with its residential neighbors, while its low-flow fixtures, low-VOC and recycled materials, and energy-efficient mechanical equipment and appliances will help it earn LEED certification.
| Feb 11, 2011
Texas megachurch inspired by yesteryear’s materials, today’s design vocabulary
The third phase of The First Baptist Church of Pasadena, Texas, involves construction of a new 115,000-sf worship center addition. Currently in design by Zeigler Cooper, the project will include a 2,500-seat worship center (with circular layout and space for a 50-person orchestra and 200-person choir), a 500-seat chapel (for weddings, funerals, and special events), and a prayer room. The addition will connect to the existing church and create a Christian Commons for education, administration, music, and fellowship. The church asked for a modern design that uses traditional materials, such as stone, brick, and stained glass. Construction is scheduled to begin this summer.
| Feb 11, 2011
Apartment complex caters to University of Minnesota students
Twin Cities firm Elness Swenson Graham Architects designed the new Stadium Village Flats, in the University of Minnesota’s East Bank Campus, with students in mind. The $30 million, six-story residential/retail complex will include 120 furnished apartments with fitness rooms and lounges on each floor. More than 5,000 sf of first-floor retail space and two levels of below-ground parking will complete the complex. Opus AE Group Inc., based in Minneapolis, will provide structural engineering services.
| Feb 11, 2011
Four-story library at Salem State will hold half a million—get this—books!
Salem State University in Massachusetts broke ground on a new library and learning center in December. The new four-story library will include instructional labs, group study rooms, and a testing center. The modern, 124,000-sf design by Boston-based Shepley Bulfinch includes space for 500,000 books and study space for up to a thousand students. Sustainable features include geothermal heating and cooling, rainwater harvesting, and low-flow plumbing fixtures.
| Feb 11, 2011
Green design, white snow at Egyptian desert retail complex
The Mall of Egypt will be a 135,000-sm retail and entertainment complex in Cairo’s modern 6th of October district. The two-story center is divided into three themed zones—The City, which is arranged as a series of streets lined with retail and public spaces; The Desert Valley, which contains upscale department stores, international retailers, and a central courtyard for music and other cultural events; and The Crystal, which will include leisure and entertainment venues, including a cinema and indoor snow park. RTKL is designing the massive complex to LEED Silver standards.
| Feb 10, 2011
7 Things to Know About Impact Glazing and Fire-rated Glass
Back-to-basics answers to seven common questions about impact glazing and fire-rated glass.
| Feb 10, 2011
Medical Data Center Sets High Bar for BIM Design Team
The construction of a new data center becomes a test case for BIM’s ability to enhance project delivery across an entire medical campus.