Federal and state incentives have sparked renewed interest in solar photovoltaic systems as a way for K-12 schools to lower their utility bills and, at the same time, educate students about the benefits of solar and other alternative energy sources.
Solar PV providers in California, Colorado, Massachusetts, New Jersey, and Utah are partnering with school districts to install solar equipment and develop a teaching curriculum. Funding can come from a variety of government and private sources, with the bulk coming from the American Reinvestment and Recovery Act of 2009.
Some organizations are sponsoring their own solar-school initiatives in conjunction with the National Energy Education Development Project (NEED). The Walmart Foundation is partnering with NEED and the Foundation for Environmental Education to implement solar schools in five cities: Chicago, Los Angeles, Minneapolis, Seattle, and Washington, D.C.
UTAH PUTS THE SUN TO WORK
Utah’s Solar for Schools program was launched in 2010, after the state received ARRA funding to install and promote renewable energy. The Salt Lake City office of Johnson Controls, Inc. won a $3 million bid to install solar in 73 Utah schools. Thus far, 55 installations had been completed.
Oscar Rangel, JCI’s manager of public-sector solutions, based in Denver, says the company’s system will save $7.75 per watt, for a potential annual savings of $800-1,200. Rangel stresses that there’s more to the program than putting panels on the roof: “There’s also an educational component that involves the teachers, the kids, and the administration.”
In an intensive one-day workshop developed by Johnson Controls and the National Energy Foundation, teachers from around the Beehive State were exposed to curriculum materials that are correlated to state and national standards. NEF educators provide on-site teacher training geared to children from elementary school through high school.
“The labs are very hands-on, with activities that engage the students in learning not just about solar, but all different kinds of alternative energy,” says one participant, Laura Wheeler, who teaches middle school and high school in Morgan, Utah.
In one lab, students learn how to configure solar panels to generate the most power. (Another lab challenges them to see who can build the best wind generator.) There’s also a program where students patrol the building to monitor and report on energy usage. Johnson Controls is supplying software that links all the solar schools in Utah, allowing students to compare their school’s performance with that of others.
A typical installation consists of a 5.3-kW solar PV module, which can provide enough electricity to power the computer lab and a few classrooms or a library, Rangel says. That may not sound like much, but don’t tell that to teacher Laura Wheeler. “Even if we’re just lighting a library with solar, that’s a big deal to our school,” she says. “We’re in a very small, rural school district, so every penny we save goes a long way.”
CALIFORNIA RAMPS UP SOLAR IN SCHOOLS
With the California Solar Initiative, a statewide solar rebate program, California’s public sector is forecasted to save $2.5 billion from solar installations over the 30-year life of the systems. Educational institutions are expected to save approximately $1.5 billion of the total, according to SunPower Corp., a solar provider based in San Jose, Calif. The California School Boards Association recently announced Solar Schools, a program that supports school districts in developing efficient solar projects. Districts borrow ARRA funds and the federal government subsidizes the interest rate, meaning that loans are repaid at an average rate of 1.5%.
Interest in solar for schools has been accelerating due to a growing emphasis on energy conservation. “Currently, we have installations planned or under way in more than 90 schools,” says Bill Kelly, SunPower’s managing director. “It’s keeping us busy along with local electricians, steel fabricators, and erectors, so we’re also stimulating the local economy.”
The SunPower systems range from 100 kW to 1,000 kW. “The larger systems are for high schools,” Kelly says. “On average, in the schools we’re working with, 75-80% of the electric bill is offset or reduced by solar.”
Most solar panels are designed for parking lots rather than rooftops, he says. The panels form a canopy over the cars, with the secondary benefit of providing shade during hot weather.
As in Utah, California’s school districts want to not only invest in solar but also bring information about the technology into the classroom.
“Many of the school districts have engineering academies, and we’re working with them to develop a renewable energy curriculum,” says Kelly.
Recently, 16 high school students from the San Ramon Valley Unified School District completed a two-week course sponsored by SunPower.
“They learned everything about solar that you could cram into two weeks,” says SunPower’s Madeleine Maguire. “The idea is to create solar ambassadors so that they can teach their peers about this technology.”
CHECKING SOLAR’S AFFORDABILITY
With solar, first cost is still the issue for property owners and their Building Teams. The price of PV panels has fallen in the last two years due to greater efficiencies in manufacturing and technology, as well as increased competition among a growing number of suppliers.
According to the market intelligence firm IHS iSuppli, in 2009 the cost per watt for a PV solar panel was nearly $2.50. By 2015, that cost is expected to drop to as low as $1, or roughly $200 per panel. Installation prices, too, are expected to decrease about 10% a year—from $5 per watt to around $3 per watt by 2015, according to IHS. The worldwide PV market is poised to double by 2015, with the U.S. market growing steadily.
SunPower’s Kelly agrees that first cost is a constraint: “Even though solar has great economics for the long term, building owners need to watch their budgets.” Still, he urges Building Teams not to miss out on rebates by waiting for prices to go down. “In California, at least, the sooner you install it the bigger the incentive you get,” he says.
SIDEBAR: Science School Raises the Green Bar
The Walking Mountains Science Center in Avon, Colo., is on target to be certified LEED Platinum, but that wasn’t the Building Team’s primary goal. “We didn’t want to just talk the talk,” says Barry Monroe, LEED AP, project manager for local builder R.A. Nelson and Associates. “We wanted to do everything we could to make the building as green and as energy efficient as possible.” The facility will act as an experiential learning center for adults and children, as well as a model of sustainability.
Designed by Avon-based architects Zehren & Associates, the building produces 42% of its own electricity on site. PV solar panels on two south-facing roofs create energy, and a heat capture system harvests excess heat from the electrical equipment room and transfers it to domestic hot water. The sun also generates heat for the radiant in-floor system.
“Sun shades are part of the solar component and work in conjunction with daylighting to reduce heat gain inside the building,” Monroe says. The building is not air conditioned.
Students will monitor the building’s energy and water usage via a computerized dashboard. The solar system is expected to save about $6,000 a year in energy costs.
Related Stories
Museums | Aug 11, 2010
Design guidelines for museums, archives, and art storage facilities
This column diagnoses the three most common moisture challenges with museums, archives, and art storage facilities and provides design guidance on how to avoid them.
| Aug 11, 2010
Broadway-style theater headed to Kentucky
One of Kentucky's largest performing arts venues should open in 2011—that's when construction is expected to wrap up on Eastern Kentucky University's Business & Technology Center for Performing Arts. The 93,000-sf Broadway-caliber theater will seat 2,000 audience members and have a 60×24-foot stage proscenium and a fly loft.
| Aug 11, 2010
Citizenship building in Texas targets LEED Silver
The Department of Homeland Security's new U.S. Citizenship and Immigration Services facility in Irving, Texas, was designed by 4240 Architecture and developed by JDL Castle Corporation. The focal point of the two-story, 56,000-sf building is the double-height, glass-walled Ceremony Room where new citizens take the oath.
| Aug 11, 2010
Carpenters' union helping build its own headquarters
The New England Regional Council of Carpenters headquarters in Dorchester, Mass., is taking shape within a 1940s industrial building. The Building Team of ADD Inc., RDK Engineers, Suffolk Construction, and the carpenters' Joint Apprenticeship Training Committee, is giving the old facility a modern makeover by converting the existing two-story structure into a three-story, 75,000-sf, LEED-certif...
| Aug 11, 2010
Utah research facility reflects Native American architecture
A $130 million research facility is being built at University of Utah's Salt Lake City campus. The James L. Sorenson Molecular Biotechnology Building—a USTAR Innovation Center—is being designed by the Atlanta office of Lord Aeck & Sargent, in association with Salt-Lake City-based Architectural Nexus.
| Aug 11, 2010
San Bernardino health center doubles in size
Temecula, Calif.-based EDGE was awarded the contract for California State University San Bernardino's health center renovation and expansion. The two-phase, $4 million project was designed by RSK Associates, San Francisco, and includes an 11,000-sf, tilt-up concrete expansion—which doubles the size of the facility—and site and infrastructure work.
| Aug 11, 2010
Goettsch Partners wins design competition for Soochow Securities HQ in China
Chicago-based Goettsch Partners has been selected to design the Soochow Securities Headquarters, the new office and stock exchange building for Soochow Securities Co. Ltd. The 21-story, 441,300-sf project includes 344,400 sf of office space, an 86,100-sf stock exchange, classrooms, and underground parking.
| Aug 11, 2010
New hospital expands Idaho healthcare options
Ascension Group Architects, Arlington, Texas, is designing a $150 million replacement hospital for Portneuf Medical Center in Pocatello, Idaho. An existing facility will be renovated as part of the project. The new six-story, 320-000-sf complex will house 187 beds, along with an intensive care unit, a cardiovascular care unit, pediatrics, psychiatry, surgical suites, rehabilitation clinic, and ...
| Aug 11, 2010
Colonnade fixes setback problem in Brooklyn condo project
The New York firm Scarano Architects was brought in by the developers of Olive Park condominiums in the Williamsburg section of Brooklyn to bring the facility up to code after frame out was completed. The architects designed colonnades along the building's perimeter to create the 15-foot setback required by the New York City Planning Commission.