flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

Stanford develops a robot that grows like a vine and carries with it inestimable applications

Building Technology

Stanford develops a robot that grows like a vine and carries with it inestimable applications

For construction, the robot could be used for wiring the ceilings or floors of a building.


By David Malone, Associate Editor | July 28, 2017
Stanford's snaking robot bending around and between two pieces of wood

Courtesy of Stanford

Like a game Snake come to life, a new robot being developed at Stanford grows like a vine and has the ability to weave through tight spaces to provide applications from disaster relief to simplifying construction projects.

The main idea behind the robot is uncomplicated; the “snake” is a tube of soft thin plastic that is folded inside itself. As the material is forced out, either pneumatically or hydraulically, the robot grows longer. According to Stanford, the robot’s design is so useful because the tip moves and results in growth while the body remains stationary, making it incredibly difficult for the robot to become stuck.

“The body can be stuck to the environment or jammed between rocks, but that doesn’t stop the robot because the tip can continue to progress as new material is added to the end,” says Elliot Hawkes, a visiting Assistant Professor from the University of California, Santa Barbara in a Stanford article on the robot.

 

 

As the robot grows, it can pull cables along, which means it could be used in the construction industry to help wire new and renovated buildings by traveling in the walls, floors, or ceilings. The robot can make turns via a control system that differentially inflates the body and a software system bases direction decisions on images received from a camera at the tip, so pipes or other obstacles already located in the wall, ceiling, or floor space become non-issues.

Other applications include scaling the robot up for search and rescue operations, growing vertically to act as an antenna, or being used to deliver materials, such as water, to hard to reach places.

The robot is detailed in a Science Robotics paper published on June 19.

Related Stories

Energy Efficiency | Jan 5, 2017

Exponential growth in net zero energy buildings predicted for the next two decades

Technology and regulations will be the drivers, says Navigant Research.

Concrete Technology | Dec 5, 2016

Telescopic walls could help combat the damages of floodwaters

The project is currently under development by a Ph.D. candidate at the University of Buffalo.

Building Technology | Nov 10, 2016

New system from MIT may help buildings monitor stress and damage over time

The computational model is being tested on MIT’s Green Building.

Building Technology | Nov 10, 2016

Multifamily development in Miami will feature healthy indoor environments

The 100-unit tower will incorporate healthy living enhancements from The Wellness Habitat Company.

Building Technology | Oct 7, 2016

How much is that LEED point worth? A new tool provides answers

Autocase analyzes the financial, social, and environmental benefits of certification.

Building Technology | Oct 5, 2016

Autodesk’s new BUILD Space is focused on the future of making things in the built environment

The 34,000-sf facility will host teams from academia, industry, and practice doing work in fields including digital fabrication, design robotics, and industrialized construction.

Contractors | Aug 10, 2016

Dodge launches new app to simplify pros' search for suitable projects to bid and work on

The product, called PlanRoom, could be particularly useful in sharing data and communications among AEC teams.

Virtual Reality | Jul 30, 2016

Stantec to open VR showrooms in two offices

The firm moves into its second stage of testing this technology as a real-time design tool.  

Building Tech | Jul 14, 2016

Delegates attending political conventions shouldn’t need to ask ‘Can you hear me now?’

Each venue is equipped with DAS technology that extends the building’s wireless coverage.

Sponsored | Building Technology | Jul 11, 2016

3D scanning technology solves University of Iowa Children’s Hospital’s curved wall curveball

Gilbane Building Company utilized advanced 3D scanning technology as part of a virtual design and construction (VDC) solution to ensure quality control throughout the lifespan of the project

boombox1
boombox2
native1

More In Category



Engineers

Navigating battery energy storage augmentation

By implementing an augmentation plan upfront, owners can minimize potential delays and unforeseen costs when augmentation needs to occur, according to Burns & McDonnell energy storage technology manager Joshua Crawford.


3D Printing

3D-printed construction milestones take shape in Tennessee and Texas

Two notable 3D-printed projects mark milestones in the new construction technique of “printing” structures with specialized concrete. In Athens, Tennessee, Walmart hired Alquist 3D to build a 20-foot-high store expansion, one of the largest freestanding 3D-printed commercial concrete structures in the U.S. In Marfa, Texas, the world’s first 3D-printed hotel is under construction at an existing hotel and campground site.

halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021