flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

The University of Washington receives a new Nanoengineering and Sciences Building

University Buildings

The University of Washington receives a new Nanoengineering and Sciences Building

The building marks the second phase of a 168,000-sf complex.


By David Malone, Associate Editor | February 16, 2018
Exterior of UW nanoengineering building

Photo: Aaron Leitz Photography

In 2012, the 90,000-sf Molecular Engineering and Sciences Building was completed on the University of Washington Campus. This past summer, the five-story, 78,000-sf Nanoengineering and Sciences Building was completed. The two connected buildings make up a 168,000-sf complex that accommodates growth in the molecular engineering and nanoengineering fields, responds to the evolving interdisciplinary nature of teaching and research, and fits within a historic, high-density area of the UW campus.

The new $87.8 million, ZGF Architects-designed nanoengineering building will house the UW Institute for Nano-Engineered Systems and is specifically equipped for the performance or organic, inorganic, and biomolecular synthesis. The limestone, aluminum and glass curtain wall facility can accommodate students and faculty in a variety of nanoengineering disciplines such as energy, materials science, computation, and medicine.

 

Exterior of new UW nanoengineering buildingPhoto: Aaron Leitz Photography.

 

Flexibility of space was a driver for both phases of the complex. Research labs were designed to adapt as the equipment, research, and faculty change. Overhead service carriers above the lab benches allow for researchers to “plug and play” in any location. At the end of each lab there are rooms that can be arranged to house large equipment or specialty research spaces.

In addition to the labs, the new building also includes general-purpose classrooms, conference rooms, and collaboration spaces. Floors two through four are programmed research laboratory spaces. The first floor includes two highly adaptable classrooms and a shared, informal learning center.

Because the nanoengineering building has mainly southern and northern exposures, ZGF needed a strategy to address the added heat loads to the building due to the different orientation from phase one. Radiant flooring is used for heating and cooling purposes and chilled sails are used in the ceilings along the south wall of the office spaces. The units are ceiling-mounted and flush to the ceiling plane.

 

A lab in UW's new nanoengineering buildingPhoto: Aaron Leitz Photography.

 

The new facility incorporates numerous sustainability features such as rain gardens and green roofs planted with vegetation to attract native bees. Stormwater runoff will be directed to the roof gardens to reduce runoff to additional drainage systems.

One of the more unique sustainable features is the use of phase-change materials (PCM). PCM is a gel that becomes warm and liquid during the day and solidifies at night. It is encapsulated in walls and ceiling panels of the naturally ventilated spaces and reduces temperature as it changes material states. The PCM is composed of an inorganic material base and is “charged” at night when windows to office spaces are automatically opened to provide a flush of cool air. The PCM has been shown to reduce the temperature around 1.5 to 2 degrees during peek times on the hottest days of the year.

 

Classroom space in the UW nanoengineering buildingPhoto: Aaron Leitz Photography.

 

The building team included Hoffman Construction Company (GC), KPFF (civil engineering, structural engineering), AEI (MEP), Site Workshop (landscape architecture), Research Facilities Design (lab planning), and Studio SC (graphics, wayfinding signage).

 

Study nook in the nanoengineering buildingPhoto: Aaron Leitz Photography.

 

Staff support area in the nanoengineering buildingPhoto: Aaron Leitz Photography.

Related Stories

Resiliency | Jun 24, 2021

Oceanographer John Englander talks resiliency and buildings [new on HorizonTV]

New on HorizonTV, oceanographer John Englander discusses his latest book, which warns that, regardless of resilience efforts, sea levels will rise by meters in the coming decades. Adaptation, he says, is the key to future building design and construction.

University Buildings | Jun 14, 2021

Radford University’s new $80.5 million Center for Adaptive Innovation and Creativity

Hord Coplan Macht designed the project in collaboration with William Rawn Associates.

Education Facilities | Jun 4, 2021

Three ProConnect events coming this fall: Sustainability (Nov 2-3), Education (Nov 16-17), Multifamily (Dec 12-14)

SGC Horizon ProConnect 2021 schedule for Education, Multifamily, Office, and Single Family events.

University Buildings | Jun 1, 2021

Georgia Southern’s new $60 million Engineering and Research Building completes

The facility will serve as the new epicenter for engineering excellence and innovation in southeast Georgia.

University Buildings | May 26, 2021

Harvard University Science and Engineering Complex completes

Behnisch Architekten designed the project.

boombox1
boombox2
native1

More In Category

Libraries

Reasons to reinvent the Midcentury academic library

DLR Group's Interior Design Leader Gretchen Holy, Assoc. IIDA, shares the idea that a designer's responsibility to embrace a library’s history, respect its past, and create an environment that will serve student populations for the next 100 years.




halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021