The 1939 Hinman Research Building on the campus of the Georgia Institute of Technology, in Atlanta, is undergoing an $8.5 million renovation to adapt and expand its capacity to serve the program objectives of the university’s College of Architecture. The renovation, which is being designed using building information modeling (BIM) and related software systems, will also produce flexible and functional interior space that encourages interaction and collaboration by architecture students and faculty.
The 35,000-sf Hinman Building was last renovated in 1951. As a result, the project, which is expected to achieve LEED-EB Gold certification from the U.S. Green Building Council, required significant interior improvement to create adequate studio and classroom space for the architecture school. The scope of work for the general contractor on the design-build project, the Dallas-based Beck Group, included demolition and abatement of the existing interior and completion of the new interior finishes.
The design for the reconstructed building, by the architecture firms Office da of Boston (design architect) and Lord Aeck & Sargent of Atlanta (architect of record), used elaborate interior millwork to create the kind of flexible and functional spaces that the College of Architecture desired. Not only was it necessary to manufacture the thousands of new interior millwork pieces at reasonable cost and within the schedule. They also had to fit the tight tolerances at their interfaces with the existing structure, as mandated by the design (which was modeled in Autodesk Revit). To accomplish this difficult task, the designers used Rhino 3D, a design tool that uses NURBS, or non-uniform rational b-splines, to create curvilinear pieces and other sophisticated shapes that other 3D design software can’t touch.
“We generally use Rhino for studying design and generating freeform geometry on most of our projects,” said Tom Beresford, project architect for Office da on the Hinman Building project. Beresford said his firm had also used the software in previous work involving custom millwork packages.
The 3D architectural models worked for design purposes, but once the Beck Group got them on site they noticed several existing conditions that made installation difficult. In particular, the staircases in the post-demolition interior of the building were mostly in the wrong locations.
“Dealing with unknowns was adding contingencies,” said Josh Oakley, BIM manager for the Beck Group. “The price of installation was starting to escalate because it would take time to figure out how to install all of these pieces, and it was getting to the point that stairs and millwork may have had to be value-engineered out. Our field people were not used to spending days on installation.”
Oakley and his Beck colleagues—notably assistant project manager Frank Fralick and project engineer Jesse Plata—came up with a plan to import the geometries of the existing Rhino models into Autodesk Inventor and then transfer that data to EdgeCAM, a computer-aided machining program that can apply CNC tooling paths to the model geometry. With these paths the model information could be used to create G code, a series of numbers used to program a CNC milling machine to create the thousands of millwork pieces needed for the project. They hoped this process could meet the $547,000 millwork budget and deliver it on time.
“If there was a way to make these models only once, we were going to do it,” Oakley said. “We needed to mitigate risk and meet budget.”
Oakley and Fralick also took a point-cloud scan of the preconstruction Hinman Building and put that information into their Autodesk Revit and Rhino models to ensure accuracy in the as-built model. In a matter of one day all the existing conditions were imported into the design model.
This workflow also allowed the Building Team to create animated DWF files as instructions for the installation of each piece of millwork from the Autodesk Inventor model. These “IKEA-like” graphical representations showed how each piece fit and where holes needed to be drilled to create the finished, ornate millwork. Oakley said having these detailed animations allowed Beck to reduce the time needed to put together the thousands of unlabeled pieces of millwork and keep the project on track and under budget.
The next step was finding a CNC fabricator who could create the custom millwork pieces using CNC machines. The modified workflow made it likely that using a traditional commercial project fabricator would be out of the question. The Building Team would also need space to store the thousands of pieces necessary to create the new interior millwork. The scope of work and the storage problem would require a different approach entirely.
The Beck team approached Amir Nejad, president and CEO of residential custom cabinetmaker Royal Custom Cabinets in Norcross, Ga., a suburb of Atlanta, to take on the millwork project. Using Royal Custom’s CNC production capability, the fabrication process was quickly commoditized. The EdgeCAM data was easily fed into Royal Custom Cabinets’ four-axis router machines. The millwork pieces began rolling out and were stored in a 15,000-sf warehouse in Norcross that the Beck Group leased.
The millwork was recently completed, and the Beck Group will be returning $30,000 in a change order fund to owner Georgia Tech. The Building Team is using the same process to build custom furniture for the project, which is expected to be completed, with the rest of the interior fit-out, in time for the Hinman Building’s reopening in January.
Related Stories
Project + Process Innovation | Mar 22, 2023
Onsite prefabrication for healthcare construction: It's more than a process, it's a partnership
Prefabrication can help project teams navigate an uncertain market. GBBN's Mickey LeRoy, AIA, ACHA, LEED AP, explains the difference between onsite and offsite prefabrication methods for healthcare construction projects.
Women in Design+Construction | Mar 21, 2023
Two leading women in construction events unite in 2023
The new Women in Residential + Commercial Construction Conference (WIR+CC) will take place in Nashville, Tenn., October 25-27, 2023. Combining these two long-standing events aligns with our mission to create an event most impactful for women in the $1.4 trillion U.S. commercial and residential design and construction industry.
Mass Timber | Mar 19, 2023
A 100% mass timber construction project is under way in North Carolina
An office building 100% made from mass timber has started construction within the Live Oak Bank campus in Wilmington, N.C. The 67,000-sf structure, a joint building venture between the GCs Swinerton and Wilmington-headquartered Monteith Construction, is scheduled for completion in early 2024.
Sports and Recreational Facilities | Mar 17, 2023
Aurora, Colo., recreation center features city’s first indoor field house, unobstructed views of the Rocky Mountains
In January, design firm Populous and the City of Aurora, Colo. marked the opening of the Southeast Aurora Recreation Center and Fieldhouse. The 77,000-sf facility draws design inspiration from the nearby Rocky Mountains. With natural Douglas Fir structure and decking, the building aims to mimic the geography of a canyon.
Architects | Mar 16, 2023
HKS launches partner diversity program to create a more diverse workforce and partnership network
Design firm HKS has launched a new partner diversity program that will work to build a more diverse AEC ecosystem. The HKS xBE program will give xBE firms (a term encompassing all disadvantaged businesses) and their members “access to opportunities to build relationships, pursue new work, and bolster innovation within the architecture and design professions,” according to HKS.
Sustainability | Mar 16, 2023
Lack of standards for carbon accounting hamper emissions reduction
A lack of universally accepted standards for collecting, managing, and storing greenhouse gas emissions data (i.e., carbon accounting) is holding back carbon reduction efforts, according to an essay published by the Rocky Mountain Institute.
Sports and Recreational Facilities | Mar 15, 2023
Georgia State University Convocation Center revitalizes long-neglected Atlanta neighborhood
Georgia State University’s new Convocation Center doubles the arena it replaces and is expected to give a shot in the arm to a long-neglected Atlanta neighborhood. The new 200,000 sf multi-use venue in the Summerhill area of Atlanta is the new home for the university’s men’s and women’s basketball teams and will also be used for large-scale academic and community events.
Sponsored | Cladding and Facade Systems | Mar 15, 2023
Metal cladding trends and innovations
Metal cladding is on a growth trajectory globally. This is reflected in rising demand for rainscreen cladding and architectural metal coatings. This course covers the latest trends and innovations in the metal cladding market.
Education Facilities | Mar 15, 2023
DLR Group’s Campus Planning Studio defines new leadership
Linsey Graff named Campus Planning Leader. Krisan Osterby transitions to Senior Planner.
Building Tech | Mar 14, 2023
Reaping the benefits of offsite construction, with ICC's Ryan Colker
Ryan Colker, VP of Innovation at the International Code Council, discusses how municipal regulations and inspections are keeping up with the expansion of off-site manufacturing for commercial construction. Colker speaks with BD+C's John Caulfield.