flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

The BYU Life Sciences Building draws inspiration from tectonic forms

Sponsored Content Building Materials

The BYU Life Sciences Building draws inspiration from tectonic forms

Strong, lightweight ALPOLIC materials honor the rugged Wasatch Mountains while standing up to the forces that created them.


May 19, 2015
ALPOLIC® materials echo nature’s colors.

ALPOLIC® materials echo nature’s colors.

Rising from the slope of a large bluff on the foothills of Utah’s imposing Wasatch Mountains, Brigham Young University’s new Life Sciences Building reveals the inspiration of its remarkable setting.

Multiple facets and elevations climb dramatically as if shaped by the same tectonic and erosional forces that have created massive escarpments and deeply incised canyons on the surrounding landscape. From inside, the expansive windows reveal that landscape while flooding learning, meeting and research spaces with natural light.

It’s a perfect metaphor for the College of Life Science’s mission to reveal the natural world to the human intellect.

This video gives a good sense of all the building has to offer. The camera “flies” through varied interior spaces – including teaching and research labs, auditoriums, corridors and common areas, a rooftop greenhouse and a massive central atrium. Exterior shots show how the complexly terraced profile echoes the mountainous landscape overlooking the BYU campus. From both inside and outside the building, you can see a prominent “spine” rising in stages through the center of the building, much like a ridgeline defining the center of a mountain’s mass.

Architectural Nexus, the firm selected to design the building, asked LCG Façades to get involved in the project early, providing design engineering expertise for the glass curtain wall and metal panel systems that would serve as the building envelope.

Ted Derby, business development manager at LCG Façades, says that a strong, lightweight cladding material was needed to meet the building’s seismic requirements: The massive Wasatch Fault that created the rugged setting is still active today. At the same time, a pressure-equalized rainscreen was required due to Utah’s adoption of the 2012 IBC Building Code.

To meet these needs, LCG Façades designed its exclusive SL-2200 rainscreen system and chose ALPOLIC® aluminum composite materials, fabricated at LCG’s 40,000 square-foot facility in Salt Lake City.

One of the key factors in achieving the project’s budgetary and quality goals, Derby says, was that “We could control most of the materials that were going on the job through our fabrication facility that allows us to fabricate curtain wall systems as well as metal composite panel systems.”

The central “spine” towers above like an alpine peak.

ALPOLIC® materials are most visible on the building’s “spine,” rising in a stepped fashion to tower above lower elevations on either side. Here, panels finished in a silver mica evoke the great blue limestone formation that caps the spine of the Wasatch Mountains. The same fire-retardant ACM panels in a custom blue mica bring hues of a summer sky to window openings and other reveals.

If you can’t be hiking or skiing the Wasatch, studying their flora and fauna in this evocative building may be the next best thing. In the new BYU Life Sciences Building, ALPOLIC® materials are truly helping to do nature proud.

Contact Information:

Phone Number: 1.800.422.7270
Fax Number: 757.436.1896
Email: info@ALPOLIC.com
Website: www.alpolic-americas.com

Related Stories

| May 31, 2012

Perkins+Will-designed engineering building at University of Buffalo opens

Clad in glass and copper-colored panels, the three-story building thrusts outward from the core of the campus to establish a new identity for the School of Engineering and Applied Sciences and the campus at large.

| May 30, 2012

Construction milestone reached for $1B expansion of San Diego International Airport

Components of the $9-million structural concrete construction phase included a 700-foot-long, below-grade baggage-handling tunnel; metal decks covered in poured-in-place concrete; slab-on-grade for the new terminal; and 10 exterior architectural columns––each 56-feet tall and erected at a 14-degree angle.

| May 30, 2012

Boral Bricks announces winners of “Live.Work.Learn” student architecture contest

Eun Grace Ko, a student at the Ryerson University in Toronto, Canada, named winner of annual contest.

| May 30, 2012

Hill International to manage construction of Al Risafa Stadium in Iraq

The three-year contract has an estimated value to Hill of approximately $3.3 million.

| May 29, 2012

Torrance Memorial Medical Center’s pediatric burn patients create their version of new Patient Tower using Legos

McCarthy workers joined the patients, donning construction gear and hard hats, to help with their building efforts.

| May 29, 2012

Reconstruction Awards Entry Information

Download a PDF of the Entry Information at the bottom of this page.

| May 29, 2012

Legrand achieves over 20% energy-intensity reduction in Presidential Challenge

West Hartford headquarters announced as Better Buildings, Better Plants “Showcase” site.

| May 24, 2012

2012 Reconstruction Awards Entry Form

Download a PDF of the Entry Form at the bottom of this page.

| May 24, 2012

Gilbane’s Spring 2012 economic report identifies multiple positive economic and market factors

Anticipating increasing escalation in owner costs through 2014.

boombox1
boombox2
native1

More In Category


Brick and Masonry

A journey through masonry reclad litigation

This blog post by Walter P Moore's Mallory Buckley, RRO, PE, BECxP + CxA+BE, and Bob Hancock, MBA, JD, of Munsch Hardt Kopf & Harr PC, explains the importance of documentation, correspondence between parties, and supporting the claims for a Plaintiff-party, while facilitating continuous use of the facility, on construction litigation projects.



Glass and Glazing

The next generation of thermal glazing: How improving U-value can yield energy savings and reduce carbon emissions

The standards for energy-efficient construction and design have been raised. Due to the development of advanced low-e coatings for the interior surface and vacuum insulating technologies, architects now have more choices to improve U-values wherever enhanced thermal performance is needed to create eco-friendly spaces. These options can double or even triple thermal performance, resulting in annual energy savings and a positive return on carbon.

halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021