flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

Claremont McKenna College science center will foster integrated disciplinary research

School Construction

Claremont McKenna College science center will foster integrated disciplinary research

Design will support educational evolution in how the college will prepare its students.


By Peter Fabris, Contributing Editor | October 31, 2022
Robert Day Sciences Center ext 1
Courtesy BIG-Bjarke Ingels Group.

The design of the Robert Day Sciences Center at Claremont McKenna College will support “a powerful, multi-disciplinary, computational approach to the grand socio-scientific challenges and opportunities of our time—gene, brain, and climate,” says Hiram E. Chodosh, college president. The need for more interdisciplinary collaboration in the sciences drove the design of the building.

“More than ever, we are seeing the confluence of previously distinct disciplines: breakthroughs in computer and data science lead to breakthroughs in the natural and life sciences,” said Bjarke Ingels, founder and creative director, BIG-Bjarke Ingels Group, the firm that designed the facility. “As a consequence, we need to provide spaces for the integration of these previously siloed sciences. The labs and classrooms are stacked in a Jenga-like composition framing a column-free, open internal space with the freedom and flexibility to adapt the ever-evolving demands of technology and science.

“Each level of the building is oriented towards a different direction of the campus, channeling the flow of people and ideas internally between the labs and the classrooms as well as externally between the integrated sciences and the rest of the campus,” Ingels said. “It is our hope that the building will not only provoke new conversations between scientists but that it may also stimulate the rest of the liberal arts students to take a deeper interest in the sciences and vice versa.”

The 135,000 sf-building’s structure is a stack of two volumes, or rectangular ‘blocks’— two per floor. Each pair is rotated 45 degrees from the floor below. Each individual volume is expressed as a rectangular wood-clad truss on the long edges, and as a floor-to-ceiling glass facade on the shorter sides. The rotation of each floor enables a sky-lit, central atrium at the heart of the building with direct views into classrooms and research spaces from all levels. Upon entering, students will find open spaces that invite collaborative activity.

Instructional and research spaces are organized around the perimeter of the building, providing classrooms with picturesque views while keeping the instructional spaces away from the more social atrium. The interior aesthetic is defined by the contrast of warm wood-clad beams, concrete floors, and the functional double-duty surfaces found within the integrated sciences labs.

Eight outdoor roof terraces offer sweeping 360-degree views of the mountains to the north, the campus to the west, and the Roberts Campus to the east. Designed with a mix of hardscape and softscape areas featuring native plantings, the terraces are multi-functional, designed to be used for outdoor classrooms, study areas, or meeting places.

Groundbreaking recently took place, and the building is expected to be completed in 2024.

On the Building Team:
Owner and/or developer: Claremont McKenna College
Design architect: BIG-Bjarke Ingels Group
Architect of record: BIG-Bjarke Ingels Group
MEP engineer: Acco Engineered Systems
Structural engineer: Saiful Bouquet
General contractor/construction manager: N/A

Robert Day Sciences Center int
Courtesy BIG-Bjarke Ingels Group. 
Robert Day Sciences Center int 2
Courtesy BIG-Bjarke Ingels Group.
Robert Day Sciences int 3
Courtesy BIG-Bjarke Ingels Group.
Robert Day Sciences int 4
Courtesy BIG-Bjarke Ingels Group. 
Robert Day Sciences ext 2
Courtesy BIG-Bjarke Ingels Group. 

 

Related Stories

University Buildings | Jul 28, 2015

OMA designs terraced sports center for UK's Brighton College

Designs for what will be the biggest construction project in the school’s 170-year history feature a rectangular building at the edge of the school’s playing field. A running track is planned for the building’s roof, while sports facilities will be kept underneath.

University Buildings | Jul 21, 2015

Maker spaces: Designing places to test, break, and rebuild

Gensler's Kenneth Fisher and Keller Roughton highlight recent maker space projects at MIT and the University of Nebraska that provide just the right mix of equipment, tools, spaces, and disciplines to spark innovation. 

Codes and Standards | Jun 18, 2015

New document addresses school safety and security

In an effort to balance security and fire safety features within codes, standards and planning, NFPA hosted a two-day workshop, “School Safety, Codes and Security”, last December. The findings are now available in an NFPA report.

K-12 Schools | Mar 2, 2015

BD+C special report: What it takes to build 21st-century schools

How the latest design, construction, and teaching concepts are being implemented in the next generation of America’s schools.

Codes and Standards | Mar 2, 2015

Nevada moves to suspend prevailing wage rules on school projects

The Nevada Senate approved a bill that would suspend prevailing wage rules on school projects.

K-12 Schools | Mar 1, 2015

Are energy management systems too complex for school facility staffs?

When school districts demand the latest and greatest, they need to think about how those choices will impact the district’s facilities employees.

K-12 Schools | Feb 26, 2015

Should your next school project include a safe room?

Many school districts continue to resist mandating the inclusion of safe rooms or storm shelters in new and existing buildings. But that may be changing.

K-12 Schools | Feb 26, 2015

Construction funding still scarce for many school districts

Many districts are struggling to have new construction and renovation keep pace with student population growth.

K-12 Schools | Feb 26, 2015

D.C.'s Dunbar High School is world's highest-scoring LEED school, earns 91% of base credits

The 280,000-sf school achieved 91 points, out of 100 base points possible for LEED, making it the highest-scoring school in the world certified under USGBC’s LEED for Schools-New Construction system.

K-12 Schools | Feb 25, 2015

Polish architect designs modular ‘kids city’ kindergarten using shipping container frames

Forget the retrofit of a shipping container into a building for one moment. Designboom showcases the plans of Polish architect Adam Wiercinski to use just the recycled frames of containers to construct a “kids city.”

boombox1
boombox2
native1

More In Category




K-12 Schools

Designing for dyslexia: How architecture can address neurodiversity in K-12 schools

Architects play a critical role in designing school environments that support students with learning differences, particularly dyslexia, by enhancing social and emotional competence and physical comfort. Effective design principles not only benefit students with dyslexia but also improve the learning experience for all students and faculty. This article explores how key design strategies at the campus, classroom, and individual levels can foster confidence, comfort, and resilience, thereby optimizing educational outcomes for students with dyslexia and other learning differences.

halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021