flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

Reimagining the concrete and steel jungle, SOM sees buildings that absorb more carbon than they emit

Urban Planning

Reimagining the concrete and steel jungle, SOM sees buildings that absorb more carbon than they emit

The firm presented its case for a cleaner built environment during the Climate Change conference in Scotland.


By John Caulfield, Senior Editor | November 11, 2021
SOM's Urban Sequoia concept envisions buildings absorbing more carbon dioxide. Images: SOM
Skidmore, Owings & Merrill conceives an urban environment that, through better design and materials choices, vastly reduces the amount of carbon dioxide created via construction and operations. Images: SOM

The world’s forests absorb an estimated 16 billion metric tons of carbon dioxide annually, or about double the 8.1 billion metric tons of CO2 that forests emit each year, according to research published earlier this year by Nature Climate Change.

Could buildings—which generate, directly or indirectly, nearly two-fifths of CO2 emissions—act like trees to capture and absorb carbon and keep the air pure? The architecture, engineering, and urban planning firm Skidmore, Owings & Merrill envisions that provocative suggestion in a concept it calls Urban Sequoia, which SOM presented during COP26, the 2021 UNN Climate Change Conference in Glasgow, Scotland.

SOM pitched its concept at a time when urban population growth rates are dictating the need for an estimated additional 2.48 trillion sf of new buildings by 2060.

How would buildings absorb more carbon than they leak out? By designing and building them specifically to sequester emissions, says Chris Cooper, an SOM Partner. Kent Jackson, another SOM Partner who presented Urban Sequoia at COP26, adds that this concept could be applied and adapted for any metro area in the world, and to all sizes and types of buildings.

IT’S ALL ABOUT THE MATERIALS

 

A high rise SOM envisions also becomes an energy generator.
SOM envisions buildings that not only sequester carbon, but also serve as fuel sources.

Urban Sequoia is an amalgam of the latest thinking about sustainable design coupled with emerging technologies. Carbon reductions can be achieved, SOM posits, by “holistically” optimizing building design, minimizing materials, and integrating biomaterials and advanced biomass.

To illustrate its concept, SOM’s prototype design is a high-rise building that, theoretically, could sequester up to 1,000 tons of carbon annually, or the absorption equivalent of 48,500 trees. The right combination of nature-based or environmentally friendlier materials—that might include hempcrete, bio-brick, timber, and so forth—could reduce the carbon impact of construction by anywhere from 50 to 95 percent compared to buildings made primarily with steel and concrete.

Over a 60-year lifespan, this prototype building would absorb up to 400 percent more CO2 than it would have emitted during construction, states SOM (which is a little vague about what “industrial applications” the captured carbon would be used for). And the use of bio-materials could turn the building into a biofuel source that would bring the building’s operations beyond net zero.

Prefab and component integration factor into SOM's concept.
These cutaways illustrate several factors—including modularity and component integration—that contribute to SOM's Urban Sequoia concept.
 

Modular systems are part of this strategyThe goal, in essence, is to turn cities into carbon sinks. SOM contends that if every city around the world built Urban Sequoias, the built environment could remove up to 1.6 billion tons of carbon from the air every year. Such a strategy might also include converting urban hardscapes into gardens, designing intense carbon-absorbing landscapes, and retrofitting streets with additional carbon-capturing technology, former grey infrastructure can sequester up to 120 tons of carbon per square kilometer (0.38 miles). When replicating these strategies in parks and other greenspaces, up to 300 tons per square kilometer of carbon could be saved annually.

Related Stories

Urban Planning | Jan 2, 2024

Federal Highway Administration releases updated traffic control manual

With pedestrian deaths surging nationwide, the Federal Highway Administration released a new edition of the Manual on Uniform Traffic Control Devices for Streets and Highways. The manual contains standards for street markings and design, standardizing signage, and making driving as seamless as possible. 

Urban Planning | Dec 18, 2023

The impacts of affordability, remote work, and personal safety on urban life

Data from Gensler's City Pulse Survey shows that although people are satisfied with their city's experience, it may not be enough.

Multifamily Housing | Nov 30, 2023

A lasting housing impact: Gen-Z redefines multifamily living

Nathan Casteel, Design Leader, DLR Group, details what sets an apartment community apart for younger generations.

Condominiums | Nov 6, 2023

Douglas Elliman launches its first Metro D.C. condominium project

Douglas Elliman, one of the largest independent residential real estate brokerages in the United States, announced last week that the firm will be handling the sales and marketing for Ten501 at City Centre West.

Office Buildings | Oct 16, 2023

The impact of office-to-residential conversion on downtown areas

Gensler's Duanne Render looks at the incentives that could bring more office-to-residential conversions to life.

Urban Planning | Oct 12, 2023

Top 10 'future-ready' cities

With rising climate dilemmas, breakthroughs in technology, and aging infrastructure, the needs of our cities cannot be solved with a single silver bullet. This Point2 report compared the country's top cities over a variety of metrics.

Resiliency | Aug 7, 2023

Creative ways cities are seeking to beat urban heat gain

As temperatures in many areas hit record highs this summer, cities around the world are turning to creative solutions to cope with the heat. Here are several creative ways cities are seeking to beat urban heat gain.

Affordable Housing | Jul 27, 2023

Repeatable, supportive housing for the unhoused

KTGY’s R+D concept, The Essential, rethinks supportive housing to support the individual and community with a standardized and easily repeatable design.

Urban Planning | Jul 26, 2023

America’s first 100% electric city shows the potential of government-industry alignment

Ithaca has turned heads with the start of its latest venture: Fully decarbonize and electrify the city by 2030.

Urban Planning | Jul 24, 2023

New York’s new ‘czar of public space’ ramps up pedestrian and bike-friendly projects

Having made considerable strides to make streets more accessible to pedestrians and bikers in recent years, New York City is continuing to build on that momentum. Ya-Ting Liu, the city’s first public realm officer, is shepherding $375 million in funding earmarked for projects intended to make the city more environmentally friendly and boost quality of life.

boombox1
boombox2
native1

More In Category

Urban Planning

Bridging the gap: How early architect involvement can revolutionize a city’s capital improvement plans

Capital Improvement Plans (CIPs) typically span three to five years and outline future city projects and their costs. While they set the stage, the design and construction of these projects often extend beyond the CIP window, leading to a disconnect between the initial budget and evolving project scope. This can result in financial shortfalls, forcing cities to cut back on critical project features.




halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021