flexiblefullpage
billboard
interstitial1
catfish1
Currently Reading

New system from MIT may help buildings monitor stress and damage over time

Building Technology

New system from MIT may help buildings monitor stress and damage over time

The computational model is being tested on MIT’s Green Building.


By David Malone, Associate Editor | November 10, 2016

Photo: Lucy Li, Wikimedia Commons

A new computational model developed by researchers at MIT takes ambient vibrations and analyzes them to pick out features in the noise to give indications of a building’s stability, MIT News reports. The feedback can then be used to monitor the building for damage or mechanical stress. Think of it as getting your blood pressure or cholesterol checked regularly to find warning signs of future problems before they become too dire.

The model is being tested on the tallest building on the MIT campus, the 21-story Green Building, a research building made of reinforced concrete. The researchers attached 36 accelerometers to selected floors from the building’s foundation to its roof to record vibrations.

But in order for these recordings to actually serve a purpose, the team needed to figure out how to take the data and link it to the health characteristics of the building, according to Oral Buyukozturk, a professor in MIT’s Department of Civil and Environmental Engineering.

Their solution was to create a computer simulation of the Green Building as a finite element model. MIT News describes this type of model as “a numerical simulation that represents a large physical structure, and all its underlying physics, as a collection of smaller, simpler subdivisions.” The researchers then added parameters to the model, such as the strength and density of concrete walls, slabs, beams, and stairs in each floor.

With all of this done, the researchers are able to then add something like the vibration caused by a passing truck to the simulation in order to see how the model predicts the building and its elements would respond. To make the model as accurate as possible, data from the Green Building's accelerometers was mined and analyzed for key features relating to the building’s stiffness and other indicators of health.

The more data that is added over time, the more intelligent the system becomes. The researchers say they are confident that any real life damage in the building will show up in the system.

This type of model will be especially useful to immediately see, after an event such as an earthquake, if and where there is damage to the building.

The researchers’ vision is for a system such as this to be outfitted on all tall buildings, making them intelligent enough to monitor their own health and provide increased resiliency.

Related Stories

| Mar 12, 2014

14 new ideas for doors and door hardware

From a high-tech classroom lockdown system to an impact-resistant wide-stile door line, BD+C editors present a collection of door and door hardware innovations. 

| Mar 10, 2014

Meet Tally – the Revit app that calculates the environmental impact of building materials

Tally provides AEC professionals with insight into how materials-related decisions made during design influence a building’s overall ecological footprint.

| Mar 7, 2014

Thom Mayne's high-tech Emerson College LA campus opens in Hollywood [slideshow]

The $85 million, 10-story vertical campus takes the shape of a massive, shimmering aircraft hangar, housing a sculptural, glass-and-aluminum base building.

| Mar 4, 2014

How EIFS came to America

Design experts from Hoffmann Architects offer a brief history of exterior insulation and finish systems in the U.S.

| Feb 20, 2014

5 myths about cross laminated timber

A CLT expert clears up several common misconceptions and myths surrounding the use of wood as a building material.

| Feb 19, 2014

Harvard's 'termite robots' can build any thing, any way [video]

The robots build by observing thier environment and then obeying a set of traffic rules programmed by researchers.

| Feb 14, 2014

Scrap tires used to boost masonry blocks at Missouri University of S&T

Research could lead to blocks that use waste material and have seismic and insulating benefits.

| Feb 14, 2014

The Technology Report 2014: Top tech tools and trends for AEC professionals

In this special five-part report, Building Design+Construction explores how Building Teams throughout the world are utilizing advanced robotics, 3D printers, drones, data-driven design, and breakthroughs in building information modeling to gain efficiencies and create better buildings. 

| Feb 14, 2014

Crowdsourced Placemaking: How people will help shape architecture

The rise of mobile devices and social media, coupled with the use of advanced survey tools and interactive mapping apps, has created a powerful conduit through which Building Teams can capture real-time data on the public. For the first time, the masses can have a real say in how the built environment around them is formed—that is, if Building Teams are willing to listen.

| Feb 13, 2014

University officials sound off on net zero energy buildings

As part of its ongoing ZNE buildings research project, Sasaki Associates, in collaboration with Buro Happold, surveyed some 500 campus designers and representatives on the top challenges and opportunities for achieving net-zero energy performance on university and college campuses. 

boombox1
boombox2
native1

More In Category



Engineers

Navigating battery energy storage augmentation

By implementing an augmentation plan upfront, owners can minimize potential delays and unforeseen costs when augmentation needs to occur, according to Burns & McDonnell energy storage technology manager Joshua Crawford.


3D Printing

3D-printed construction milestones take shape in Tennessee and Texas

Two notable 3D-printed projects mark milestones in the new construction technique of “printing” structures with specialized concrete. In Athens, Tennessee, Walmart hired Alquist 3D to build a 20-foot-high store expansion, one of the largest freestanding 3D-printed commercial concrete structures in the U.S. In Marfa, Texas, the world’s first 3D-printed hotel is under construction at an existing hotel and campground site.

halfpage1

Most Popular Content

  1. 2021 Giants 400 Report
  2. Top 150 Architecture Firms for 2019
  3. 13 projects that represent the future of affordable housing
  4. Sagrada Familia completion date pushed back due to coronavirus
  5. Top 160 Architecture Firms 2021